HIGH-VOLTAGE MIXED-SIGNAL IC

65COM x 102SEG Matrix LCD Controller-Driver

Preliminary Specifications Revision 0.1

January 27, 2006

Specifications and information herein are subject to change without notice.

Table of Content

INTRODUCTION	 	 	1
MAIN APPLICATIONS	 	 	1
FEATURE HIGHLIGHTS	 	 	1
ORDERING INFORMATION	 	 	2
BLOCK DIAGRAM	 	 	3
PIN DESCRIPTION	 		4
RECOMMENDED COG LAYOUT	 	 	6
CONTROL REGISTERS	 	 	7
COMMAND TABLE			
COMMAND DESCRIPTION	 		10
LCD VOLTAGE SETTING			
VLCD QUICK REFERENCE	 		16
LCD DISPLAY CONTROLS		 	18
HOST INTERFACE	 	 	20
DISPLAY DATA RAM		 	26
RESET & POWER MANAGEMENT	 	 	28
ESD CONSIDERATION	 	 	31
ABSOLUTE MAXIMUM RATINGS	 	 	32
SPECIFICATIONS	 	 	33
AC CHARACTERISTICS	 	 	34
PHYSICAL DIMENSIONS	 	 	38
ALIGNMENT MARK INFORMATION	 	 	39
PAD COORDINATES	 	 	40
TRAY INFORMATION	 	 	42

UC1602s

Single-Chip, Ultra-Low Power 65COM x 102SEG Matrix Passive LCD Controller-Driver

INTRODUCTION

UC1602s is an advanced high-voltage mixedsignal CMOS IC, especially designed for the display needs of ultra-low power hand-held devices.

This chip employs UltraChip's unique DCC (Direct Capacitor Coupling) driver architecture to achieve near crosstalk free images.

In addition to low power COM and SEG drivers, UC1602s contains all necessary circuits for high-V LCD power supply, bias voltage generation, temperature compensation, timing generation, and graphics data memory.

Advanced circuit design techniques are employed to minimize external component counts and reduce connector size while achieving extremely low power consumption.

MAIN APPLICATIONS

• Cellular Phones, and other battery operated palm top devices or portable Instruments

FEATURE HIGHLIGHTS

- Single chip controller-driver for 65x102 graphics STN LCD panels.
- Support both row-ordered and columnordered display buffer RAM access.
- Support industry standard 2-wire, 3-wire, 3/4-wire, and 4-wire serial bus (I²C, S9, S8uc, S8).

- Ultra-low power consumption under all display patterns.
- Software programmable frame rates at 80 and 100 Hz.
- Self-configuring 7-x charge pump with onchip pumping capacitors. Only 3 external capacitors to operate.
- On-chip bypass capacitor for V_{LCD} makes V_{LCD} bypass capacitor optional.
- On-chip Power-ON Reset and Software RESET commands, make RST pin optional.
- Very low pin count (9~10-pin) allows exceptional image quality in COG format on conventional ITO glass.
- Flexible data addressing/mapping schemes to support wide ranges of software models and LCD layout placements.
- V_{DD} (digital) range: 1.8V ~ 3.3V V_{DD} (analog) range: 2.6V ~ 3.3V LCD V_{OP} range: 4.8V ~ 11.5V
- Software programmable 4 temperature compensation coefficients.

ORDERING INFORMATION

Part Number	MTP	I ² C	Description
UC1602sGAA	No	Yes	Gold Bumped Die

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

USE OF I²C

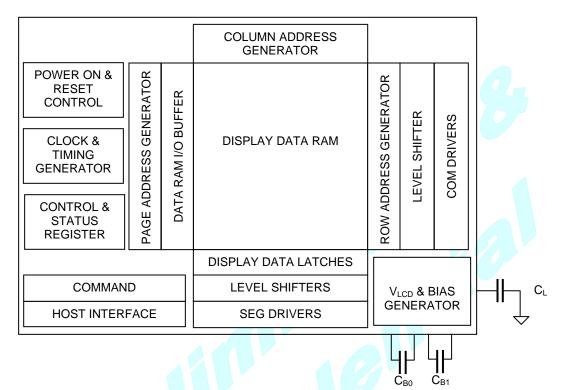
The implementation of I^2C is already included and tested in all silicon. However, unless I^2C licensing obligation is executed satisfactorily, it is not legal to use UltraChip product for I^2C applications. Unless I^2C version is ordered from UltraChip, the customer will take the responsibility for all such licensing liabilities.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of ninety (90) days from the date of UltraChip's delivery. There is no post waffle saw/pack testing performed on individual die. Although the latest modern processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and quality their application in which the die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.


CONTENT DISCLAIMER

UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by UltraChip for its use, nor for infringement of patents or other rights of third parties. No part of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of UltraChip Inc. UltraChip's terms and conditions of sale apply at all times.

CONTACT DETAILS

UltraChip Inc. (Headquarter) 2F, No. 70, Chowtze Street, Nei Hu District, Taipei 114, Taiwan, R. O. C. Tel: +886 (2) 8797-8947 Fax: +886 (2) 8797-8910 Sales e-mail: sales@ultrachip.com Web site: http://www.ultrachip.com

BLOCK DIAGRAM

PIN DESCRIPTION

Name	Туре	Pins	Description
			MAIN POWER SUPPLY
			V_{DD} is the digital power supply and it should be connected to a voltage source that is no higher than $V_{\text{DD2}}/V_{\text{DD3.}}$
V _{DD} V _{DD2}	PWR	1 2	$V_{\text{DD2}}/V_{\text{DD3}}$ is the analog power supply and it should be connected to the same power source.
V _{DD3}		1	Please maintain the following relationship: V_{DD} +1.3V $\geq V_{DD2/3} \geq V_{DD}$
			Minimize the trace resistance for V_{DD} and V_{DD2}/V_{DD3} .
V _{SS}	GND	2	Ground. Connect V_{SS} and V_{SS2} to the shared GND pin.
V _{SS2}	GND	2	Minimize the trace resistance for V _{SS} and V _{SS2} .
			LCD POWER SUPPLY & VOLTAGE CONTROL
V _{B1+} V _{B1-}	PWR	2 2	LCD Bias Voltages. These are the voltage sources to provide SEG driving currents. These voltages are generated internally. Connect capacitors of C_{BX} value between V_{BX+} and V_{BX-} .
V _{B0+} V _{B0-}	FVIN	2 2	The resistance of these four traces directly affects the SEG driving strength of the resulting LCD module. Minimizing the trace resistance is critical in achieving high quality image.
V		1	Main LCD Power Supply. Connect these pins together.
V _{LCDIN} V _{LCDOUT}	PWR	1 1	By-pass capacitor C_L is optional. It can be connected between V_{LCD} and V_{SS} . When C_L is used, keep the trace resistance under 100 Ω .

Νοτε

- Recommended capacitor values: •
 - $\begin{array}{l} C_{B}: \ 150x \sim 250x \ LCD \ \text{load capacitance or} \ 2.2 \mu F \ (2V), \ \text{whichever is higher}. \\ C_{L}: \ 330nF \ (25V) \ \text{is appropriate for most applications}. \end{array}$

Name	Туре	Pins		Description	n
				HOST INTERFACE	
			Bus mode.	The interface bus mode is detern	mined by BM[1:0].
			BM[1:0]	Mode	
			00	4 wire SPI w/ 8-bit token (S8: conventional)	
BM0 BM1	I	1 1	01	2-wire serial (I ² C)	
			10	3/4 wire SPI w/ 8-bit token (S8uc: Ultra-compact)	
			11	3-wire SPI w/ 9-bit token (S9: conventional)	
CS1 CS0	I	1 1		or Chip Address. In S8 and S9 d CS1="H". When the chip is no	
RST	I	1	Since UC16 RST pin is r	not required for proper chip oper	et and Software Reset command, ation.
				r has been included on-chip. The When RST is not used, connect	
CD	I	1	CD pin is no	ncoming command if it is a contr ot used in S9 and I ² C modes. Co I instruction "H": display da	
			Bi-direction	al bus for both serial host interfa	ces.
			In serial mo	des, connect D[0] to SCK, D[1] t	to SDA.
D0~D1	I/O	2	In COG app affect effect	lications, be careful to control IT ive output level of SDA.	O trace resistance, as it will
			Connect an	y <mark>unused</mark> pins to V _{SS} .	
			Нідн	OLTAGE LCD DRIVER OUTPUT	
SEG1 ~ SEG102	ΗV	102		n) driver outputs. Support up to ed driver outputs open.	102 pixels.
COM1 ~ COM64	ΗV	64	COM (row) outputs ope		rows. Leave unused COM driver
RIC	HV	2	Icon driver	outputs. Leave it open if not used	d.
				MISC. PINS	
	ο	2		D. These pins are connected to the determinant of the determinant o	
V _{DDX}	0	2		should not be used to provide V_{DDX} to V_{DD} externally	
TST4	I	1	Test contro	. Connect to GND.	
TST2	I/O	1	Test I/O pin	s. Leave these pins open during	normal use.

Note: Several control registers will specify the "0-based index" for COM and SEG electrodes. In those situations, $COM\underline{x}$ or $SEG\underline{x}$ will correspond to index \underline{x} -1, and the value range for those index registers will be 0~64 for COM and 0~101 for SEG.

High-Voltage Mixed-Signal IC

RECOMMENDED COG LAYOUT

NOTES FOR V_{DD} WITH COG:

The typical operation condition of UC1602s, V_{DD} =1.8V, should be met under all operating conditions. Unless V_{DD} and $V_{DD2/3}$ ITO trances can each be controlled to be 20 Ω or lower; otherwise V_{DD} - $V_{DD2/3}$ separation can cause the actual on-chip V_{DD} to drop below V_{DD} =1.65V during high speed Data Write condition. Therefore, for COG, V_{DD} - $V_{DD2/3}$ separation requires very careful ITO layout and very stringent testing before MP.

CONTROL REGISTERS

UC1602s contains registers that control the operation of the chip. These registers can be modified by software commands. The commands supported by UC1602s are described in the next section. The following table is a summary of all the registers defined by UC1602s and their default values.

Name: Symbolic reference of the register.

Bits: Number of bits in this register.

Default: Register value after the chip power up or system reset. The bold numbers show these defaults. *Description:* Register meaning and functions.

Name	Bits	Default	Description
Name	Dits	Delault	
SL	6	0H	Scroll Line. Scroll the displayed image up by SL rows. The valid SL value is between 0 (for no scrolling) and (63). Setting SL outside of this range causes undefined effect on the displayed image.
CA	8	ОH	Display Data RAM Column Address. Value range is 0 ~101. (Used Display Data RAM access from Host Interface)
PA	4	ОH	Display Data RAM Row Address (0 ~ 7) (Used in Host to Display Data RAM access)
BR	2	3H	Bias Ratio. The ratio between VLCD and VBIAS.00: 601: 710: 811: 9
тс	2	0H	Temperature Compensation (per °C). 00b: 0.00% 01b: -0.05% 10b: -0.10% 11b: -0.15%
PM	8	62H	Electronic Potentiometer to fine tune the value of V _{LCD}
PC	3	6H	Power Control. PC[0]: 0b: LCD: ≤12nF 1b: LCD: 12~20nF PC[2:1]: 00b: External V _{LCD} 11b: Internal V_{LCD} (7x charge pump)
AC	3	1H	Address Control: AC[0]: WA: Automatic column/page Wrap Around (Default 1: ON) AC[1]: Auto-Increment order 0: Column (CA) first 1: Page (PA) first AC[2]: PID: PA (page address) auto Increment Direction (L:+1 H:-1)
DC	3	00Н	Display Control: DC[0]: PXV: Pixels Inverse (bit-wise data inversion. Default 0: OFF) DC[1]: APO: All Pixels ON (Default 0: OFF) DC[2]: Display ON/OFF (Default 0: OFF)
LC	6	10H	LCD Control: LC[0]: MSF: MSB First mapping Option. LC[1]: Reserved (always set 0) LC[2]: MX, Mirror X. SEG/Column sequence inversion (Default: OFF) LC[3]: MY, Mirror Y COM/Row sequence inversion (Default: OFF) LC[4]: Line Rate = Frame-Rate x Mux-Rate 0b: 5.2 Klps 1b: 6.5 Klps (Klps: Kilo-line-per-second) LC[5]: Partial Display 0b: Disable. Mux-Rate = CEN+1 (DST and DEN are not used.) 1b: Enable. Mux-Rate = DEN – DST +1
RS	1		Reset in progress. Host Interface not ready.
CEN DST	6 6	3FH 00H	COM scanning end (last COM with full line cycle, 0 based index) Display start (first COM with active scan pulse, 0 based index)

High-Voltage Mixed-Signal IC

Name	Bits	Default	Description
DEN	6	3FH	Display end (last COM with active scan pulse, 0 based index) Please maintain the following relationship: CEN = (the actual number of pixel rows on the LCD) – 1 CEN ≥ DEN ≥ DST + 9
APC	1	N/A	Advanced Program Control. For UltraChip only. Please do NOT use.
			Status Register
ОМ	2	_	Operating Modes (read only) 00: Reset 01: (Not used) 10: Sleep 11: Normal

COMMAND TABLE

The following is a list of host commands supported by UC1602s

C/D: 0: Control, W/R: 0: Write Cycle, # Useful Data bits 1: Data 1: Read Cycle

Don't Care _

_	. .		14/10						-	-	-		
	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action	Default
1	Write Data Byte	1	0	#	#	#	#	#	#	#	#	Write 1 byte	N/A
2	Read Data Byte	1	1	#	#	#	#	#	#	#	#	Read 1 byte	N/A
3	Get Status	0	1	MX	MY	WA	DE		roduct [2:0] =	_	Ver =0	Get Status	N/A
4	Set Column Address LSB	0	0	0	0	0	0	#	#	#	#	Set CA [3:0]	0H
4	Set Column Address MSB	0	0	0	0	0	1	#	#	#	#	Set CA [6:4]	0H
5	Set Temp. Compensation	0	0	0	0	1	0	0	-	#	#	Set TC[1:0]	00b: 0.00%/°C
6	Set Power Control	0	0	0	0	1	0	1	#	#	#	Set PC[2:0]	6H
7	Set Adv. Program Control (double-byte command)	0 0	0 0	0 #	0 #	1 #	1 #	0 #	0 #	0 #	R #	Set APC[R][7:0], R = 0, or 1	N/A
8	Set Scroll Line	0	0	0	1	#	#	#	#	#	#	Set SL[5:0]	0H
9	Set Page Address	0	0	1	0	1	1	#	#	#	#	Set PA[3:0]	0H
10	Set V _{BIAS} Potentiometer (double-byte command)	0 0	0 0	1 #	0 #	0 #	0 #	0 #	0 #	0 #	1 #	Set PM[7:0]	62H
11	Set Partial Display Control	0	0	1	0	0	0	0	1	0	#	Set LC[5]	0b
12	Set RAM Address Control	0	0	1	0	0	0	1	#	#	#	Set AC[2:0]	1H
13	Set Line Rate	0	0	1	0	1	0	0	0	0	#	Set LC[4]	1H
14	Set All-Pixel-ON	0	0	1	0	1	0	0	1	0	#	Set DC[1]	0H
15	Set Inverse Display	0	0	1	0	1	0	0	1	1	#	Set DC[0]	0H
16	Set Display Enable	0	0	1	0	1	0	1	1	1	#	Set DC[2]	0H
17	Set LCD Mapping Control	0	0	1	1	0	0	#	#	0	#	Set LC[3:0]	0H
18	System Reset	0	0	1	1	1	0	0	0	1	0	System Reset	N/A
19	NOP	0	0	1	1	1	0	0	0	1	1	No operation	N/A
20	Set Test Control	0	0	1	1	1	0	0	1	Т	Т	For testing only.	N/A
20	(double-byte command)	0	0	#	#	#	#	#	#	#	#	Do not use.	IN/A
21	Set LCD Bias Ratio	0	0	1	1	1	0	1	0	#	#	Set BR[1:0]	3H
22	Set COM End	0	0	1	1 #	1 #	1 #	0 #	0 #	0 #	1 #	Set CEN[5:0]	3FH
				1	# 1	# 1	# 1	# 0	# 0	# 1	# 0		
23	Set Partial Display start	0	0		#	#	#	#	#	#	#	Set DST[5:0]	00H
24	Set Partial Display End	0	0	1	1 #	1 #	1 #	0 #	0 #	1 #	1 #	Set DEN[5:0]	3FH
L													

* Other than commands listed above, all other bit patterns result in NOP (No Operation).

High-Voltage Mixed-Signal IC

COMMAND DESCRIPTION

1. Write Data Byte to Memory

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	
Write data	1	0	8-bit Data write to SRAM								

2. Read Data Byte from Memory

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	
Read data	1	1	8-bit Data read from SRAM								

Write/Read Data Byte (Command 1, or 2) accesses display data RAM based on Page Address (PA) register and Column Address (CA) register. To minimize bus interface cycles, PA and CA will increase or decrease automatically after each bus cycle, depending on the setting of Access Control (AC) registers. PA and CA can also be programmed directly by issuing *Set Page Address* and *Set Column Address* commands.

If <u>Wrap-Around</u> (WA) is OFF (AC[0] = 0), CA will stop increasing after reaching the end of the page, and system programmers need to set the values of PA and CA explicitly. If WA is ON (AC[0]=1), when CA reaches the end of the page, CA will be reset to 0 and PA will increase or decrease by 1, depending on the setting of <u>Page Increment Direction</u> (PID, AC[2]). When PA reaches the boundary of RAM, PA will be wrapped around to the other end of RAM and continue. (See command Window Programming for more details)

3. Get Status

Get Status 0 1 MX MY WA DE Product_Code Ve	Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
	Get Status	0	1	MX	MY	WA	DE	Proc	duct_C	Code	Ver

Status flag definitions:

MX: Status of register LC[1], mirror X.
MY: Status of register LC[2], mirror Y.
WA: Status of register AC[0]. Automatic column/row wrap around.
DE: Display enable flag. Display is enabled when DE=1.
Product Code: 100b
Ver. IC Version. 0 or 1.

4. Set Column Address

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Column Address LSB CA[3:0]	0	0	0	0	0	0	CA3	CA2	CA1	CA0
Set Column Address MSB CA[7:4]	0	0	0	0	0	1	-	CA6	CA5	CA4

Set the SRAM column address before Write/Read memory from host interface.

CA value range: 0~101

5. Set Temperature Compensation

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Temperature Comp. TC[1:0]	0	0	0	0	1	0	0	I	TC1	TC0

Set V_{BIAS} temperature compensation coefficient (%-per-degree-C)

Temperature compensation curve definition:

00b= -0.00%/C 01b= -0.05%/C 10b= -0.10%/C 11b= -0.15%/C

6. Set Power Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Multiplexing Rate PC[2:0]	0	0	0	0	1	0	1	PC2	PC1	PC0

Set PC[0] according to the capacitance loading of LCD panel.

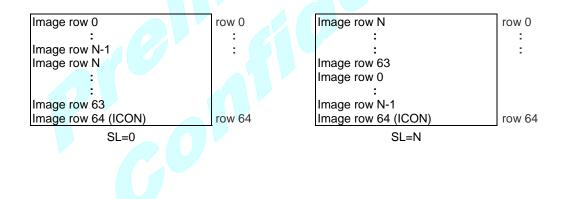
0b: LCD: ≤ **12nF** 1b: LCD: 12~20nF

Set PC[2:1] to program the build-in charge pump stages:

00b: External V_{LCD} **11b: Internal V_{LCD}** (7x charge pump)

7. Set Advanced Program Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Adv. Program Control APC[R][7:0]	0	0	0	0	1	1	0	0	0	R
(Double-byte command)	0	0		А	PC re	egiste	er para	amete	er	


For UltraChip only. Please Do <u>NOT</u> use.

8. Set Scroll Line

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Scroll Line SL[5:0]	0	0	0	1	SL5	SL4	SL3	SL2	SL1	SL0

Set the scroll line number. Possible value = 0~63

Scroll line setting will scroll the displayed image up by *SL* rows. Icon output RIC will not be affected by Set Scroll Line command.

9. Set Page Address

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Page Address	0	0	1	0	1	1	PA3	PA2	PA1	PA0

Set the SRAM page address before write/read memory from host interface. Each page of SRAM corresponds to 8 COM lines on LCD panel, except for the last page. The last page corresponds to the icon output RIC.

Possible value = **0**~8.

10. Set V_{BIAS} Potentiometer

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set V _{BIAS} Potentiometer PM [7:0]	0	0	1	0	0	0	0	0	0	1
(Double byte command)	0	0	PM7	PM6	PM5	PM4	PM3	PM2	PM1	PM0

Program V_{BIAS} Potentiometer (PM[7:0]). See section LCD VOLTAGE SETTING for more detail.

Effective range: 0 ~ 255

11. Set Partial Display Control

Set LC [5] 0 0 1 0 0 0	0 1	0 LC5

This command is used to enable partial display function.

L[5]: **0b Disable Partial Display**, Mux-Rate = CEN+1 (DST,DEN not used.) 1b Enable Partial Display, Mux-Rate = DEN - DST+1

12. Set RAM Address Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set AC [2:0]	0	0	1	0	0	0	1	AC2	AC1	AC0

Program registers AC[2:0] for RAM address control. It controls the auto-increment behavior of CA and PA.

AC[0] - WA, Automatic column/page wrap around.

- 0: CA or PA (depends on AC[1]= 0 or 1) will stop incrementing after reaching boundary
- 1: CA or PA (depends on AC[1]= 0 or 1) will restart, and PA or PA will increment by one step.

AC[1] - Auto-Increment order

- 0 : column (CA) increment (+1) first until CA reach CA boundary, then PA will increment by (+/-1).
- 1 : page (PA) increment (+/-1) first until PA reach PA boundary, then CA will increment by (+1).

AC[2] – PID, page address (PA) auto increment direction (0/1 = +/-1) When WA=1 and CA reaches CA boundary, PID controls whether page address will be adjusted by +1 or -1.

13. Set Line Rate

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Line Rate LC [4]	0	0	1	0	1	0	0	0	0	LC4

Program LC [4] for frame rate setting

0b: 5.2Klps **1b: 6.5Klps** (Klps: Kilo-line per second)

14. Set All Pixel ON

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set All Pixel ON DC [1]	0	0	1	0	1	0	0	1	0	DC1

Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data stored in display RAM.

15. Set Inverse Display

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Inverse Display DC [0]	0	0	1	0	1	0	0	1	1	DC0

Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This function has no effect on the existing data stored in display RAM.

16. Set Display Enable

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Display Enable DC[2]	0	0	1	0	1	0	1	1	1	DC2

This command is for programming register DC[2]. When DC[2] is set to 1, UC1602s will first exit from sleep mode, restore the power and then turn on COM drivers and SEG drivers.

17. Set LCD Mapping Control

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set LCD Control LC[3:0]	0	0	1	1	0	0	MY	MX	0	LC0

Set LC[3:2] for COM (row) mirror (MY), SEG (column) mirror (MX).

MY is implemented by reversing the mapping order between RAM and COM (row) electrodes. The data stored in RAM is not affected by MY command. MY will have immediate effect on the display image.

MX is implemented by selecting the CA or 50-CA as write/read (from host interface) display RAM column address so this function will only take effect after rewriting the RAM data.

LC[0]: MSF, MSB First mapping option.

18. System Reset

Action		W/R	D7	D6	D5	D4	D3	D2	D1	D0
System Reset	0	0	1	1	1	0	0	0	1	0

This command will activate the system reset.

Control register values will be reset to their default values. Data store in RAM will not be affected.

19. NOP

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
No Operation	0	0	1	1	1	0	0	0	1	1

This command is used for "no operation".

20. Set Test Control

Action		W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set TT	0	0	0 1 1 1 0 0 1		Т	Т				
(Double byte command)	0	0	Testing parameter							

This command is used for UltraChip production testing. Please do <u>NOT</u> use.

High-Voltage Mixed-Signal IC

21. Set LCD Bias Ratio

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Bias Ratio BR [1:0]	0	0	1	1	1	0	1	0	BR1	BR0
Bias ratio definition: 00b= 6 01b= 7	10b=	8		11b:	- 9					

22. Set COM End

Action		W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set COM	0	0	1 1 1 1 0 0 0		1					
(Double-byte command)	0	0	-	CEN register parameter				Z		

This command programs the ending COM electrode.

CEN defines the number of used COM electrodes, and it should correspond to the number of pixel-row in the LCD.

When the LCD has less than 64 pixel rows, the LCD designer should set CEN to N-1 (where N is the number of pixel rows) and use COM1 through COM-N as COM driver electrodes.

23. Set Partial Display Start

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set DST	0	0	1	1	1	0	0	0	1	0
(Double-byte command)	0	0	-	DST register parameter						

This command programs the starting COM electrode. Which gas been assigned a full scanning period and will output an active COM scanning pulse.

24. Set Partial Display End

Action		W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set DEN	0	0	1	1	1	1	0	0	1	1
(Double-byte command)	0	0	-	DEN register parameter						

This command programs the ending COM electrode. Which gas been assigned a full scanning period and will output an active COM scanning pulse.

CEN, DST, and DEN are 0-based index of COM electrodes. They control only COM electrode activity, and do not affect the mapping of display RAM to each COM electrodes. The image displayed by each pixel row is therefore not affected by the setting of these three registers.

LCD VOLTAGE SETTING

MULTIPLEX RATES

Multiplex Rate (*MR*) is completely software programmable in UC1602s via the register MR.

The allowable LC[4] value is defined in the following table:

MR	0	1					
Line Rate	5.2	6.5					
Table 1: Bias Ratios							

BIAS RATIO SELECTION

Bias Ratio (*BR*) is defined as the ratio between V_{LCD} and V_{BIAS} , i.e.

 $BR = V_{LCD}/V_{BIAS},$

where $V_{BIAS} = V_{B1+} - V_{B1-} = V_{B0+} - V_{B0-}$, etc.

UC1602s supports four bias ratios (BR) as listed below. BR can be selected by software program.

BR	0	1	2	3
Bias Ratio	6	7	8	9

Table 2: Bias Ratios

The tunable range of V_{BIAS} is from 0.8 V to 1.32 V at 25 $^{\circ}\text{C}.$

VBIAS TEMPERATURE COMPENSATION

 V_{BIAS} is a temperature compensated reference voltage. V_{BIAS} increases automatically as ambient temperature cools down.

For all four TC, V_{BIAS} are normalized to a same voltage at 25 °C. The compensation coefficients are given below:

тс	0	1	2	3
% per [°] C	0.00	- 0.05	- 0.10	- 0.15

Table 3: Temperature Compensation

V_{LCD} GENERATION

 V_{LCD} may be supplied either by internal charge pump or by external power supply. The source of V_{LCD} is controlled by PC[2:1]. For good product reliability, it is recommended to keep V_{LCD} under 11.5 V for all temperature conditions.

When V_{LCD} is generated internally, the voltage level of V_{LCD} is determined by four control registers: *BR* (Bias Ratio), *PM* (Potentiometer), and TC (Temperature Compensation), with the following relationship:

$$V_{LCD} = (C_{V0} + C_{PM} \times PM) \times (1 + (T - 25) \times C_T \%)$$

where

 C_{V0} and C_{PM} are two design constants. The values are provided in the Figure on the next page,

PM is the numerical value of PM register,

T is the ambient temperature in ${}^{O}C$, and

 C_T is the temperature compensation coefficient as selected by TC register.

VLCD FINE TUNING

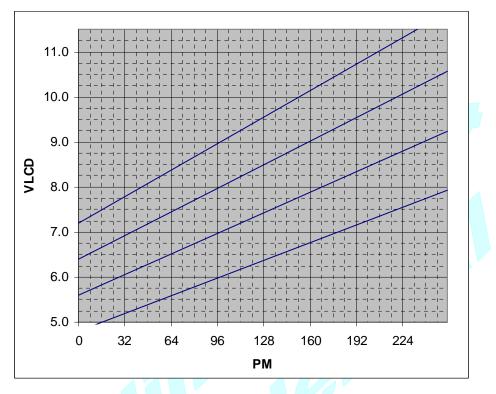
Black-and-white STN LCD is sensitive to even a 1% mismatch between IC driving voltage and the V_{OP} of LCD. However, it is difficult for LCD makers to guarantee such high precision matching of parts from different venders. It is therefore necessary to adjust V_{LCD} to match the actual V_{OP} of the LCD.

For the best result, software based approach for V_{LCD} adjustment is the recommended method for V_{LCD} fine-tuning.

For applications where mechanical manual finetuning of V_{LCD} becomes necessary, then V_{BIAS} pin may be used with an external trim pot to fine tune the V_{LCD} . Please refer to Application Notes for more detailed discussion on this subject.

LOAD DRIVING STRENGTH

UC1602s' power supply circuits are designed to handle LCD panels with load capacitance up to ~30nF when $V_{DD2} = 2.5V$, and up to ~35nF when $V_{DD2} \ge 3V$.


POWER UP/DOWN SEQUENCE

Due to the use of fully embedded power supply, built-in power ready detector, and draining circuit, there is no explicit power up, power down sequences for UC1602s controllers when using internal V_{LCD} generator.

On the other hand, caution must be exercised when external V_{LCD} source is used. The general rule of thumb is to make sure Display Enable is OFF before connecting or disconnecting external V_{LCD} sources.

High-Voltage Mixed-Signal IC

VLCD QUICK REFERENCE

V_{LCD} Programming Curve.

BR	Cvo (V)	С _{РМ} (mV)	РМ	VLCD Range (V)
6	4.8	12.24	0	4.8
0	4.0	12.24	255	7.92
7	5.6	14.28	0	5.6
ľ	5.0	14.20	255	9.24
8	6.4	16.32	0	6.4
0	0.4	10.52	255	10.56
9	7.2	18.36	0	7.2
9	1.2	10.30	234	11.5

Note:

The maximum reliable V_{LCD} operating value is at 11.5V. For best reliability, keep V_{LCD} under **11.5V** under all temperature.

HI-V GENERATOR AND BIAS REFERENCE CIRCUIT

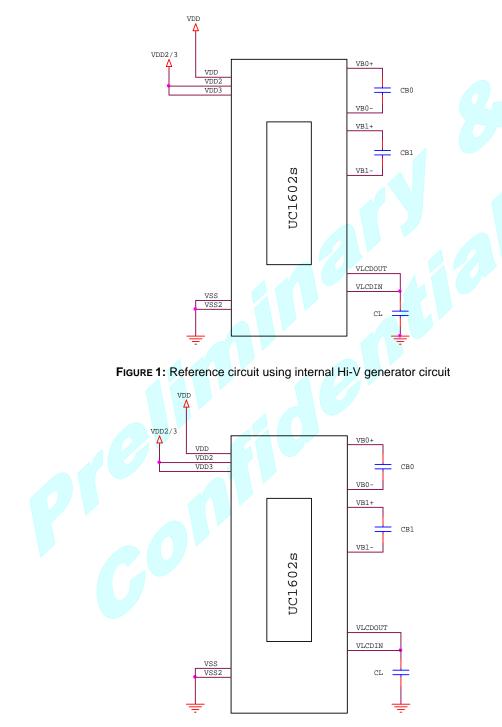


FIGURE 2: Reference circuit using external Hi-V source

Note

- Recommended component values: •
 - C_B : 150x~250x LCD load capacitance or 2.2uF (2V), whichever is higher. C_L : 330nF (25V) is appropriate for most applications.

High-Voltage Mixed-Signal IC

LCD DISPLAY CONTROLS

CLOCK & TIMING GENERATOR

UC1602s contains a built-in system clock. All required components for the clock oscillator are built-in. No external parts are required.

Two different line rates are provided for system design flexibility: 5.2 Klps and 6.5 Klps.

Choose lower line rate for lower power, and choose higher line rate to improve LCD contrast and minimize flicker.

DRIVER MODES

COM and SEG drivers can be in either Idle mode or Active mode, controlled by Display Enable flag (DC[2]). When SEG and COM drivers are in idle mode, their outputs are connected to V_{SS} .

DRIVER ARRANGEMENTS

The naming conventions are: COMx (where $x = 1 \sim 64$) refers to the row driver for the x-th row of pixels on the LCD panel.

The mapping of COM(x) to LCD pixel rows fixed and it is not affected by SL, MX or MY settings.

DISPLAY CONTROLS

There are three groups of display control flags in the control register DC: Driver Enable (DE), All-Pixel-ON (APO) and Inverse (PXV). DE has the overriding effect over PXV and APO. Driver Enable is controlled by the value of DC[2] via Set Display ON command. When DC[2] is set to OFF (logic "0"), both column and row drivers will become idle and UC1602s will put itself into Sleep Mode to conserve power.

When DC[2] is set to ON, the DE flag will become "1",and UC1602s will first exit from Sleep Mode, restore the power (V_{LCD} , V_{BIAS} etc.) and then turn on row drivers and proper column drivers.

ALL PIXELS ON (APO)

When set, this flag will force all active column drivers to output ON signals, disregarding the data stored in the display buffer.

This flag has no effect when Display Enable is OFF and it has no effect on data stored in RAM.

INVERSE (PXV)

When this flag set to ON, active column drivers will output the inverse of the value it received from the display buffer RAM. This flag has no impact on data stored in RAM.

PARTIAL SCROLL

Control register FL specifies a region of rows which are not affected by the SL register. Since SL register can be used to implement scroll function. The FL register can used to implement fixed region when the other part of the display is scrolled by SL.

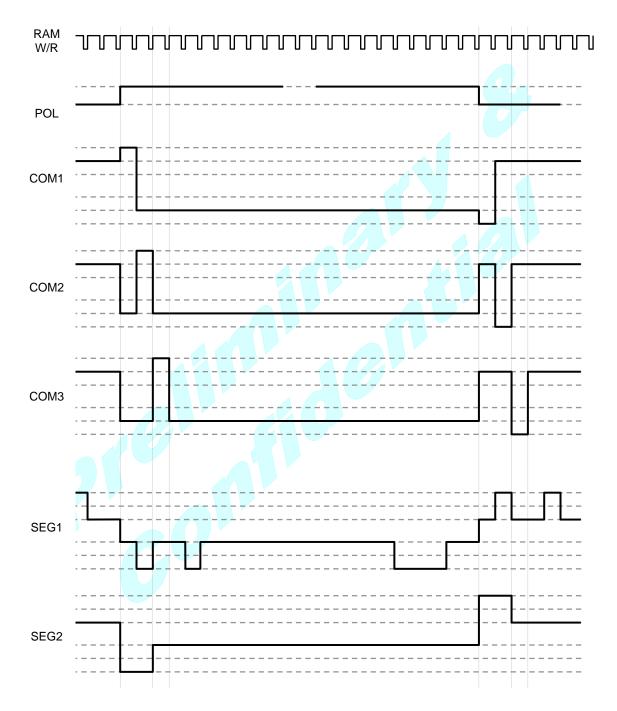


FIGURE 3: COM and SEG Electrode Driving Waveform

High-Voltage Mixed-Signal IC

HOST INTERFACE

As summarized in the table below, UC1602s supports four serial bus protocols, which designers can use to create compact LCD modules.

			Bus	Туре			
		S8 (4wr)	S8uc (3wr)	S9	l ² C		
SL	Width		Se	rial			
a Pins	Access		Write Only		R / W		
Data	BM[1:0]	0	10	11	01		
0 &	CS[1:0]	Chip Select	-	Chip Select	-		
Control	CD	Contro	I / Data	-	_		
ŭ	D[1:0]	D0=SCK, D1=SDA					

* Connect unused control pins and data bus pins to V_{DD} or $V_{\text{SS.}}$

 Table 4: Host Interfaces Choices

SERIAL INTERFACE

UC1602s supports four serial modes, one 4-wire SPI mode (S8), one compact 3/4-wire mode (S8uc), one 3-wire SPI mode (S9), and one 2-wire SPI mode (I2C). Bus interface mode is determined by the wiring of the BM[1:0]. See table in last page for more detail.

4-wire Serial Interface (S8)

Only write operations are supported in 4-wire serial mode. Pin CS[1:0] are used for chip select and bus cycle reset. Pin CD is used to determine the content of the data been transferred. During each write cycle, 8 bits of data, MSB first, are latched on eight rising SCK edges into an 8-bit data holder.

If CD=0, the data byte will be decoded as command. If CD=1, this 8-bit will be treated as data and transferred to proper address in the Display Data RAM on the rising edge of the last SCK pulse.

Pin CD is examined when SCK is pulled low for the LSB (D0) of each token.

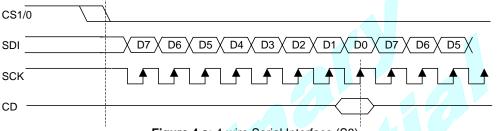
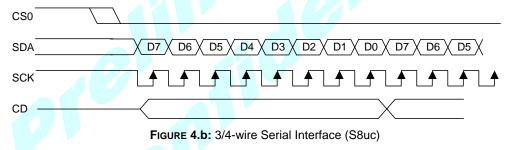



Figure 4.a: 4-wire Serial Interface (S8)

S8UC (3/4-WIRE) INTERFACE

Only write operations are supported in this 3/4-wire serial mode. The data format is identical to S8. However, in addition to CS pins, CD pin transitions

will also reset the bus cycle in this mode. So, if CS pins are hardwired to enable chip-select, the bus can work properly with only three signal pins.

S9 (3-wire) Interface

Only write operations are supported in this 3-wire serial mode. Pins CS[1-0] are used for chip select and bus cycle reset. On each write cycle, the first bit is CD, which determines the content of the following 8 bits of data, MSB first. These 8 command or data bits are latched on rising SCK edges into an 8-bit data holder. If CD=0, the data byte will be decoded as command. If CD=1, this 8-bit will be treated as data and transferred to proper address in the Display Data RAM at the rising edge of the last SCK pulse.

By sending CD information explicitly in the bit stream, control pin CD is not used, and should be connected to either V_{DD} or V_{SS} . The toggle of CS0 or CS1 for each byte of data/command is recommended but optional.

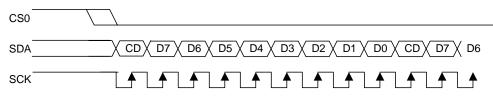


FIGURE 4.c: 3-wire Serial Interface (S9)

2-wire Serial Interface (I²C)

When BM[1:0] is set to "LH", UC1602s is configured as a I^2C Bus signaling protocol compliant slave device. Please refer to I^2C standard for details of the bus signaling protocol. Please refer to AC Characteristic section for timing parameters of UltraChip implementation.

In this mode, pins CS[1:0] become A[3:2] and is used to configure UC1602s' device address. Proper wiring to V_{DD} or V_{SS} is required for the IC to operate properly for I^2C mode.

Each UC1602s I²C interface sequence starts with a START condition (S) from the bus master, followed by a sequence header, containing a device address, the mode of transfer (CD, 0:Control, 1:Data), and the direction of the transfer (RW, 0:Write, 1:Read).

Since both WR and CD are expressed explicitly in the header byte, the control pins WR[1:0] and CD are not used in I^2C mode and should be connected to V_{SS}.

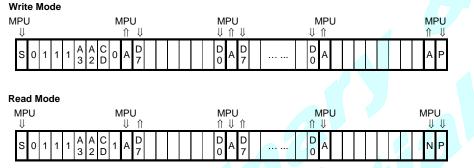
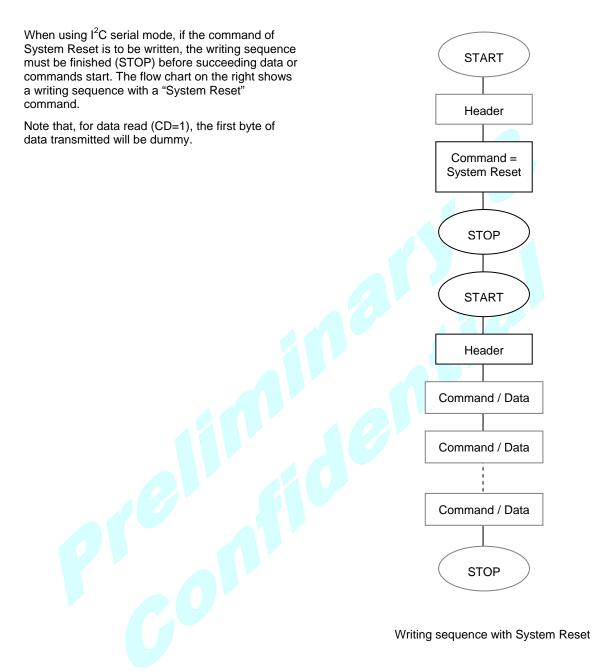



Figure 4.d: 2-wire Serial Interface (I²C)

The direction (read or write) and content type (command or data) of the data bytes following each header byte are fixed for the sequence. To change the direction ($R \Leftrightarrow W$) or the content type ($C \Leftrightarrow D$), start a new sequence with a START (S) flag, followed by a new header.

After receiving the header, the UC1602s will send

out an acknowledge signal (A). Then, depends on the setting of the header, the transmitting device (either the bus master or UC1602s) will start placing data bits on SDA, MSB to LSB, and the sequence will repeat until a STOP signal (P, in WRITE), or a Not Acknowledge (N, in READ mode) is sent by the bus master.

High-Voltage Mixed-Signal IC

©1999~2006

HOST INTERFACE REFERENCE CIRCUIT

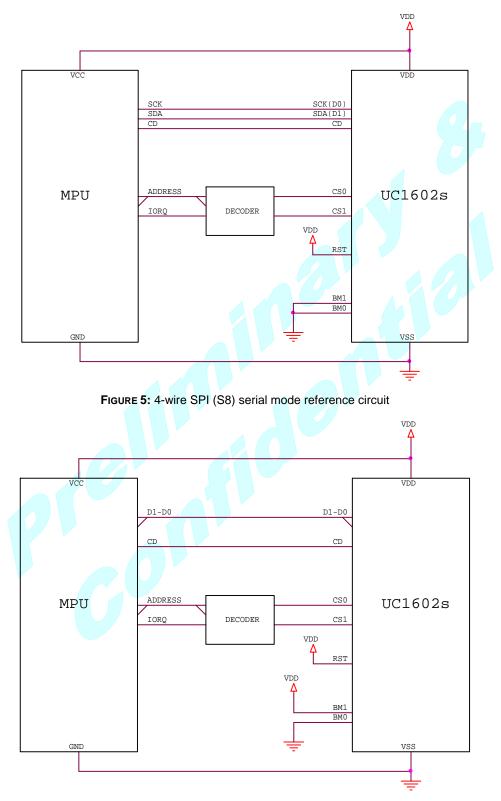


FIGURE 6: 3 / 4 -wire SPI (S8uc) serial mode reference circuit

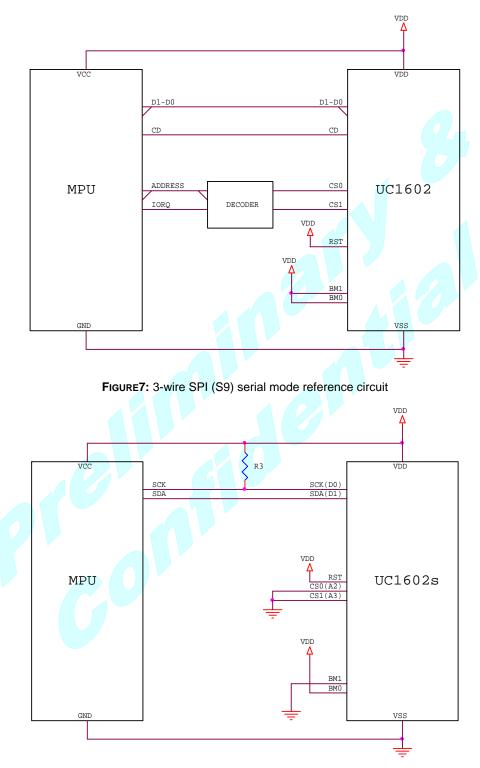


FIGURE 8: 2-wire SPI (I²C) serial mode reference circuit

Note:

1. RST pin is optional. When RST pin is not used, connect the pin to V_{DD} .

2. R3: 2k ~ 10k Ω , use lower resistor for bus speed up to 3.6MHz, use higher resistor for lower power.

High-Voltage Mixed-Signal IC

DISPLAY DATA RAM

DATA ORGANIZATION

The input display data is stored to a dual port static RAM (RAM, for Display Data RAM) organized as 65x102.

After setting CA and RA, the subsequent data write cycle will store the data for the specified pixel to the proper memory location.

Please refer to the map in the following page among the relations of COM, SEG, SRAM, and various memory control registers.

DISPLAY DATA RAM ACCESS

The Display Data RAM is a special purpose dual port RAM, which allows asynchronous access to both its column and row data. Thus, RAM can be independently accessed both for Host Interface and for display operations.

DISPLAY DATA RAM ADDRESSING

A Host Interface (HI) memory access operation starts with specifying Row Address (RA) and Column Address (CA) by issuing *Set Row Address* and *Set Column Address* commands.

If wrap-around (WA, AC[0]) is OFF (0), CA will stop incrementing after reaching the end of row (101), and system programmers need to set the values of PA and CA explicitly.

If WA is ON (1), when CA reaches end of page, CA will be reset to 0 and PA will increment or decrement, depending on the setting of row Increment Direction (PID, AC[2]). When PA reaches the boundary of RAM (i.e. PA = 0 or 7), PA will be wrapped around to the other end of RAM and continue.

MX IMPLEMENTATION

Column Mirroring (MX) is implemented by selecting either (CA) or (101 - CA) as the RAM column address. Changing MX affects the data written to the RAM.

Since MX has no effect of the data already stored in RAM, changing MX does not have immediate effect on the displayed pattern. To refresh the display, refresh the data stored in RAM after setting MX.

Row SCANNING

For each field, the scanning starts at R1 through Rm, where m depends on the setting of MR.

Row electrode scanning orders are not affected by Start Line (SL), or Mirror Y (MY, LC[3]). Visually, register SL having a non-zero value is equivalent to scrolling the LCD display up or down (depends on MY) by *SL* rows.

RAM Address Generation

The mapping of the data stored in the display SRAM and the scanning electrodes can be obtained by combining the fixed R*m* scanning sequence and the following RAM address generation formula.

During the display operation, the RAM line address generation can be mathematically represented as following:

For the 1st line period of each field Line = SL

Otherwise *Line* = Mod(*Line*+1, 64)

Where Mod is the modular operator, and *Line* is the bit slice line address of RAM to be outputted to column drivers. Line 0 corresponds to the first bit-slice of data in RAM.

The above *Line* generation formula produce the "loop around" effect as it effectively resets *Line* to 0 when *Line*+1 reaches 64.

MY IMPLEMENTATION

Row Mirroring (MY) is implemented by reversing the mapping order between row electrodes and RAM, i.e. the mathematical address generation formula becomes:

For the 1st line period of each field Line = Mod(SL + MR - 1, 64)Otherwise

Line = Mod(Line-1, 64)

Visually, the effect of MY is equivalent to flipping the display upside down. The data stored in display RAM is not affected by MY.

		Line																M	Y=0		MY	′=1	
PA[3:0]	0	AddeCss																SL=0	SL=16	SL=0	SL=0	SL=25	SL=25
	D0	00H																C1	C49	C64	C48	C25	C9
	D1 D2	01H 02H						_	_									C2 C3	C50 C51	C63 C62	C47 C46	C24 C23	C8 C7
0000	D3	03H										Page 0						C4	C52	C61	C45	C22	C6
0000	D4	04H		_								Fage U						C5	C53	C60	C44	C21	C5
	D5 D6	05H 06H																C6 C7	C54 C55	C59 C58	C43 C42	C20 C19	C4 C3
	D0	07H		_														C8	C56	C57	C42	C19	C2
	D0	08H																C9	C57	C56	C40	C17	C1
	D1	09H																C10	C58	C55	C39	C16	
	D2 D3	0AH 0BH		_				_	_									C11 C12	C59 C60	C54 C53	C38 C37	C15 C14	
0001	D4	0CH										Page 1						C13	C61	C52	C36	C13	
	D5	0DH																C14	C62	C51	C35	C12	
	D6 D7	0EH 0FH		_														C15 C16	C63 C64	C50 C49	C34 C33	C11 C10	
	D0	10H		-												_		C10	C1	C49	C32	C10	
	D1	11H																C18	C2	C47	C31	C8	
	D2	12H																C19	C3	C46	C30	C7	
0010	D3 D4	13H 14H			-	-	-					Page 2	\vdash				H	C20 C21	C4 C5	C45 C44	C29 C28	C6 C5	
	D5	15H																C22	C6	C43	C27	C4	
	D6	16H																C23	C7	C42	C26	C3	
	D7 D0	17H 18H				<u> </u>	-											C24 C25	C8 C9	C41 C40	C25 C24	C2 C1	
	D0	18H 19H			-	<u> </u>	-		\vdash		-	_					H	C25	C10	C39	C24	C64	C48*
	D2	1AH																C27	C11	C38	C22	C63	C47
0011	D3	1BH										Page 3						C28	C12	C37	C21	C62	C46
	D4 D5	1CH 1DH							_									C29 C30	C13 C14	C36 C35	C20 C19	C61 C60	C45 C44
	D6	1EH										i E	_					C31	C15	C34	C18	C59	C43
	D7	1FH															-	C32	C16	C33	C17	C58	C42
	D0 D1	20H 21H					_											C33 C34	C17 C18	C32 C31	C16 C15	C57 C56	C41 C40
	D1 D2	21H 22H							\mathbf{X}	~								C35	C18	C30	C15	C55	C39
0100	D3	23H					G					Page 4	4					C36	C20	C29	C13	C54	C38
0.00	D4	24H				4						. ugo .				4		C37	C21	C28	C12	C53	C37
	D5 D6	25H 26H																C38 C39	C22 C23	C27 C26	C11 C10	C52 C51	C36 C35
	D7	27H																C40	C24	C25	C9	C50	C34
	D0	28H																C41	C25	C24	C8	C49	C33
	D1 D2	29H 2AH																C42 C43	C26 C27	C23 C22	C7 C6	C48 C47	C32 C31
	D2 D3	2AH 2BH						_				1	_		_			C43	C27	C22	C6 C5	C47	C30
0101	D4	2CH		Σ								Page 5						C45	C29	C20	C4	C45	C29
	D5	2DH		Ν							Z							C46	C30	C19	C3	C44	C28
	D6 D7	2EH 2FH			-	├─							\vdash				H	C47 C48	C31 C32	C18 C17	C2 C1	C43 C42	C27 C26
	D0	30H					_					-					Н	C49	C33	C16		C41	C25
	D1	31H																C50	C34	C15		C40	C24
	D2 D3	32H 33H		-	-								\vdash				H	C51 C52	C35 C36	C14 C13		C39 C38	C23 C22
0110	D3	34H									-	Page 6					Η	C52	C36	C13		C38 C37	C22 C21
	D5	35H			r			/										C54	C38	C11		C36	C20
	D6	36H	7										\square				Щ	C55	C39	C10		C35	C19
	D7 D0	37H 38H			-	<u> </u>	—		\vdash	\vdash	-		\vdash	\vdash			Н	C56 C57	C40 C41	C9 C8		C34 C33	C18 C17
	D0	39H										k					H	C58	C41	C7		C32	C16
	D2	3AH		\sim														C59	C43	C6		C31	C15
0111	D3 D4	3BH 3CH		—	<u> </u>	<u> </u>						Page 7					Н	C60 C61	C44 C45	C5 C4		C30 C29	C14 C13
	D4 D5	3CH 3DH				-	-						\vdash				Н	C61 C62	C45 C46	C4 C3		C29 C28	C13 C12
	D6	3EH																C63	C47	C2		C27	C11
4666	D7	3FH					_					Dec. A					Ц	C64	C48	C1		C26	C10
1000	D0	40H				I						Page 8					ш	CIC	CIC	CIC 65	CIC 49	CIC 65	CIC 49
				-	2		4	ŝ	ى ى	2	ŝ		ø	စ္န	8	5	8			00		JX	-3
			0	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8		SEG98	SEG99	SEG100	SEG101	SEG102						
		WX												SI			SE						
		2	-	SEG102	SEG101	SEG100	SEG99	SEG98	SEG97	SEG96	SEG95		SEG5	SEG4	SEG3	SEG2	SEG1						
			·	SEG	SEG	SEG	SE(SE(SE(SE(SE(SE	SE	SE	SE	SE						
						_										_							

Example for memory mapping: let MX = 0, MY = 0, SL = 0, according to the data shown in the above table:

High-Voltage Mixed-Signal IC

RESET & POWER MANAGEMENT

TYPES OF RESET

UC1602s has two different types of Reset:

Power-ON-Reset and System-Reset.

Power-ON-Reset is performed right after V_{DD} is connected to power. Power-On-Reset will first wait for about ~5mS, depending on the time required for V_{DD} to stabilize, and then trigger the System Reset.

System Reset can also be activated by software command or by connecting RST pin to ground.

In the following discussions, Reset means *System Reset*.

RESET STATUS

When UC1602s enters RESET sequence:

- Operation mode will be "Reset"
- System Status bit RS will stay as "1" until the Reset process is completed. When RS=1, the IC will only respond to *Get Status* command. All other commands are ignored.
- All control registers are reset to default values. Refer to Control Registers for details of their default values.

OPERATION MODES

UC1602s has three operating modes (OM): Reset, Sleep, Normal.

For each mode, the related statuses are as below:

Mode	Reset	Sleep	Normal
OM	00	10	11
Host Interface	Active	Active	Active
Clock	OFF	OFF	ON
LCD Drivers	OFF	OFF	ON
Charge Pump	OFF	OFF	ON
Draining Circuit	ON	ON	OFF

Table 5: Operating Modes

CHANGING OPERATION MODE

Two commands will initiate OM transitions: Set Display Enable, and System Reset.

When DC[2] is modified by *Set Display Enable*, OM will be updated automatically. There is no other action required to enter power saving mode.

OM changes are synchronized with the edges of UC1602s internal clock. To ensure consistent system states, wait at least 10µS after Set Display Enable or System Reset command.

Action	Mode	ОМ
Reset command RST_ pin pulled "L" Power ON reset	Reset	00
Set Driver Enable to "0"	Sleep	10
Set Driver Enable to "1"	Normal	11

Table 6: OM changes

Both Reset mode and Sleep mode drain the charges stored in the external capacitors C_{B0} , C_{B1} , and C_L . When entering Reset mode or Sleep mode, the display drivers will be disabled.

The difference between Sleep mode and Reset mode is that, Reset mode clears all control registers and restores them to default values, while Sleep mode retains all the control registers values set by the user.

It is recommended to use Sleep Mode for Display OFF operations as UC1602s consumes very little energy in Sleep mode (typically under 2µA).

EXITING SLEEP MODE

UC1602s contains internal logic to check whether V_{LCD} and V_{BIAS} are ready before releasing row and column drivers from their OFF states. When exiting Sleep Mode and Reset Mode, column and row drivers will not be activated until UC1602s internal voltage sources are restored to their proper values.

POWER-UP SEQUENCE

UC1602s power-up sequence is simplified by built-in "Power Ready" flags and by the automatic invocation of *System-Reset* command after *Power-ON-Reset*.

System programmers are only required to wait $5 \sim 10 \text{ mS}$ before CPU starting to issue commands to UC1602s. No additional time sequences are required for enabling of the charge pump, turning on the display drivers and writing to RAM or any other commands. However, while turning on V_{DD}, V_{DD2/3} should be started not later than V_{DD}.

Delay allowance between V_{DD} and $V_{DD2/3}$ is illustrated as Figure 11.

Power-Down Sequence

To prevent the charge stored in capacitors $C_{\text{BX+}},$ $C_{\text{BX-}},$ and C_{LCD} from damaging the LCD when V_{DD} is switched off, use Reset mode to enable the built-in charge draining circuit to discharge these external capacitors.

The draining resistance is 3K Ω for both V_{LCD} and V_{B+}. It is recommended to wait 3 x *RC* for V_{LCD} and 1.5 x *RC* for V_{B+}. For example, if C_{LCD} is 330nF, then the draining time required for V_{LCD} is 0.5~1mS.

When internal V_{LCD} is not used, UC1602s will *not* drain V_{LCD} during RESET. System designers need to make sure external V_{LCD} source is properly drained off before turning off V_{DD} .

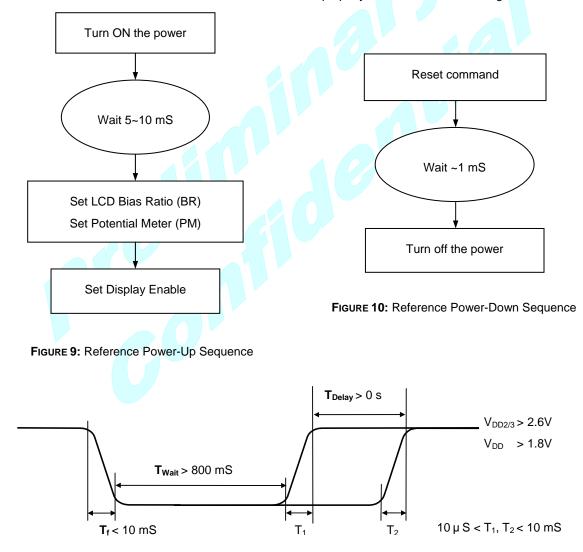


Figure 11: Delay allowance and Power Off-On Sequence

High-Voltage Mixed-Signal IC

SAMPLE COMMAND SEQUENCES FOR POWER MANAGEMENT

The following tables are examples of command sequence for power-up, power-down and display ON/OFF operations. These are only to demonstrate some "typical, generic" scenarios. Designers are encouraged to study related sections of the datasheet and find out what the best parameters and control sequences are for their specific design needs.

- C/D The type of the interface cycle. It can be either Command (0) or Data (1)
- These items are required Type Required: Customized: These items are not necessary if customer parameters are the same as default We recommend new users to skip these commands and use default values. Advanced: These commands depend on what users want to do. Optional:

POWER-UP

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	-	-	Ι		-	-		-	-	-	Automatic Power-ON Reset.	Wait ~5mS after V _{DD} is ON
С	0	0	0	0	1	0	0	1	#	#	(5) Set Temp. Compensation	Set up LCD format specific
С	0	0	1	1	0	0	0	#	#	#	(17) Set LCD Mapping Control	parameters, MX, MY, etc.
A	0	0	1	0	1	0	0	0	0	#	(13) Set Line Rate	Fine tune for power, flicker, contrast.
С	0	0	1	1	1	0	1	0	#	#	(21) Set LCD Bias Ratio	LCD specific operating
R	0 0	0 0	1 #	0 #	0 #	0 #	0 #	0 #	0 #	1 #	(10) Set V _{BIAS} Potentiometer	voltage setting
	1	0	#	#	#	#	#	#	#	#		
0	•	•	•	•	•	•	•		:	:	Write display RAM	Set up display image
	1	0	#	#	#	#	#	#	#	#		
R	0	0	1	0	1	0	1	1	1	1	(16) Set Display Enable	

Power-Down

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	0	0	1	1	1	0	0	0	1	0	(18) System Reset	
R	-		-	ł	Ι	I	Ι	-		-	Draining capacitor	Wait ~1mS before V_{DD} OFF
DISPLAY-OFF												

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	0	0	1	0	1	0	1	1	1	0	(16) Set Display Disable	
С	1 1	0 0	# #	# · · #	# · · #	# #	# #	# #	# #	# #		Set up display image (Image update is optional. Data in the RAM is retained through the SLEEP state.)
R	0	0	1	0	1	0	1	1	1	1	(16) Set Display Enable	

ESD CONSIDERATION

UC1600 series products usually are provided in bare die format to customers. This makes the product particularly sensitive to ESD damage during handling and manufacturing process. It is, therefore, highly recommended that LCM makers strictly follow the "JESD 625-A Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices" when manufacturing LCM.

The following pins in UC1602s require special "ESD Sensitivity" consideration in particular:

Test Mode Pin Name	MM* V _{DD}	MM* V _{SS}	HBM* V _{DD}	HBM* V _{SS}
VB1+	(TBD)			
VB1-				
VB0+				
VB0-				
V _{LCDIN} /OUT				
COM/SEG Driver pins				

* MM: Machine Mode; HBM: Human Body Mode

According to UltraChip's Mass Production experiences, the ESD tolerance conditions are believed to be very stable and can produce high yield in multiple customer sites. However, special care is still required during handling and manufacturing process to avoid unnecessary yield loss due to ESD damages.

High-Voltage Mixed-Signal IC

ABSOLUTE MAXIMUM RATINGS

In accordance with IEC134 - notes 1, 2 and 3.

Symbol	Parameter	Min.	Max.	Unit
V _{DD}	Logic Supply voltage	-0.3	+4.0	V
V _{DD2}	LCD Generator Supply voltage	-0.3	+4.0	V
V _{DD3}	Analog Circuit Supply voltage	-0.3	+4.0	V
$V_{DD2/3}$ - V_{DD}	Voltage difference between V_{DD} and $V_{\text{DD2/3}}$		1.6	V
V_{LCD}	LCD Generated voltage	-0.3	+13.2	V
V _{IN} / V _{OUT}	Any input/output	-0.4	V _{DD} + 0.3	V
T _{OPR}	Operating temperature range	-30	+85	°C
T _{STR}	Storage temperature	-55	+125	°C

Notes

- 1. V_{DD} is based on $V_{SS} = 0V$
- 2. Stress values listed above may cause permanent damages to the device.

SPECIFICATIONS

DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply for digital circuit		1.65		3.45	V
V _{DD2/3}	Supply for bias & pump		2.5		3.45	V
V_{LCD}	Charge pump output	$V_{DD2/3} \ge 2.6V, 25^{O}C$			11.5	V
VD	LCD data voltage	$V_{DD2/3} \ge 2.6V, 25^{O}C$	0.80		1.32	V
VIL	Input logic LOW				0.2V _{DD}	V
V _{IH}	Input logic HIGH		0.8V _{DD}			V
V _{OL}	Output logic LOW				0.2V _{DD}	V
V _{OH}	Output logic HIGH		0.8V _{DD}			V
١ _{IL}	Input leakage current				1.5	μA
R _{0(SEG)}	SEG output impedance	V _{LCD} = 11V		2	3	kΩ
R _{0(COM)}	COM output impedance	V _{LCD} = 11V		2	3	kΩ
F_{FR}	Average Frame Rate	LC[3] = 0b	-10%	80	+10%	Hz
					-	
Power C	CONSUMPTION					

POWER CONSUMPTION

$V_{DD} = (TBD) V,$ $V_{LCD} = (TBD)V$ Mux Rate = (TBD), $C_B = (TBD) \mu F$	Bias Ratio = (TBD)b, Frame Rate = (TBD)b, Bus mode = (TBD), Temperature = (TBD),	$\begin{array}{l} PM=(TBD),\\ Panel Loading\ (PC[0])\leqslant(TBD),\\ C_{L}=(TBD)\ nF,\\ All outputs are open circuit. \end{array}$			
Display Pattern	Conditions	Тур.	Max.		
All-OFF	Bus = idle	(TBD)	(TBD)		
2-pixel checker	Bus = idle	(TBD)	(TBD)		
-	Bus = idle (standby current)	-	5		
	50				

High-Voltage Mixed-Signal IC

AC CHARACTERISTICS

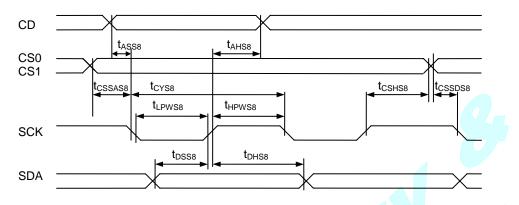


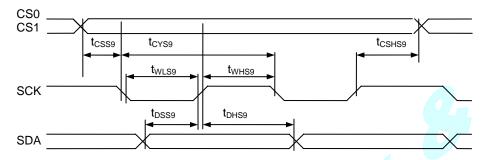
FIGURE 12: Serial Bus Timing Characteristics (for S8 / S8uc)

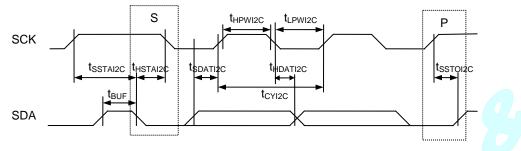
 $^{(2.5}V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units				
t _{ASS8}	CD	Address setup time		0	-	nS				
t _{AHS8}		Address hold time		40	-	nS				
t _{CYS8}		System cycle time		135	-	nS				
t _{LPWS8}	SCK	Low pulse width		65	-	nS				
t _{HPWS8}		High pulse width		65	-	nS				
t _{DSS8} t _{DHS8}	SDA	Data setup time Data hold time		30 15	-	nS				
tcssAs8 tcssDs8 tcsHs8	CS1/CS0	Chip select setup time		10 10 20		nS				
$8V \le V_{DD} < 2.5V$, Ta= -30 to +85°C)										

$(1.8V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{ASS8}	CD	Address setup time		0	-	nS
t _{AHS8}	OD	Address hold time		60	١	nS
t _{CYS8}		System cycle time		200	١	nS
t _{LPWS8}	SCK	Low pulse width		95	١	nS
t _{HPWS8}		High pulse width		95	١	nS
t _{DSS8} t _{DHS8}	SDA	Data setup time Data hold time		30 25	Ι	nS
tcssas8 t _{cssds8} t _{cshs8}	CS1/CS0	Chip select setup time		10 10 20		nS




FIGURE 13: Serial Bus Timing Characteristics (for S9)

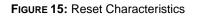
 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units	
t _{CYS9}		System cycle time		80	-	nS	
t _{LPWS9}	SCK	Low pulse width		35	-	nS	
t _{HPWS9}	1	High pulse width		35	_	nS	
t _{DSS9} t _{DHS9}	SDA	Data setup time Data hold time		30 20	-	nS	
tcssas9 t _{CSHS9}	CS1/CS0	Chip select setup time		5 5		nS	
$(1.8V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}\text{C})$							
0	0.01	D		NA ¹			

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{CYS9}		System cycle time		160	I	nS
t _{LPWS9}	SCK	Low pulse width		70	-	nS
t _{HPWS9}		High pulse width		70	-	nS
t _{DSS9} t _{DHS9}	SDA	Data setup time Data hold time		60 40	Ι	nS
tcssas9 t _{CSHS9}	CS1/CS0	Chip select setup time		10 10		nS

High-Voltage Mixed-Signal IC

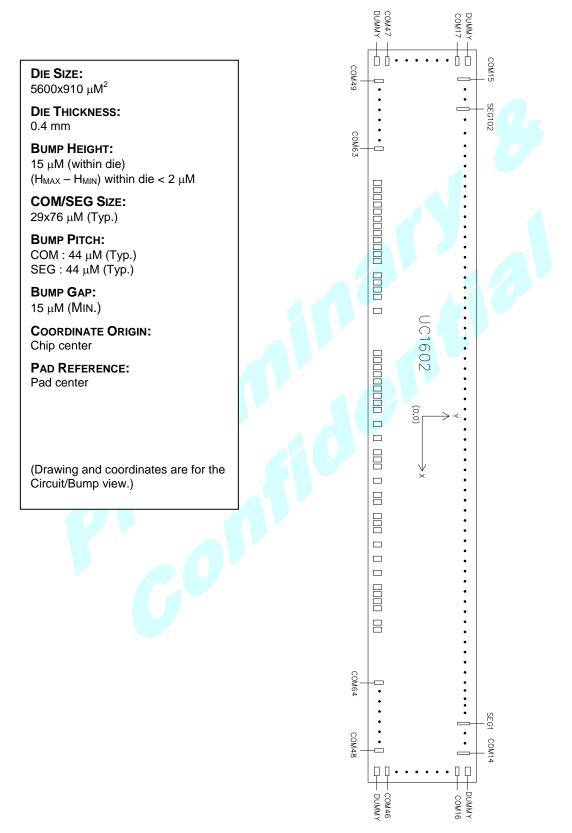
FIGURE 14 Serial bus timing characteristics (for l^2C)


(2.5V \leq V_{DD} < 3.3V, Ta= –30 to +85 $^{\rm o}\text{C})$

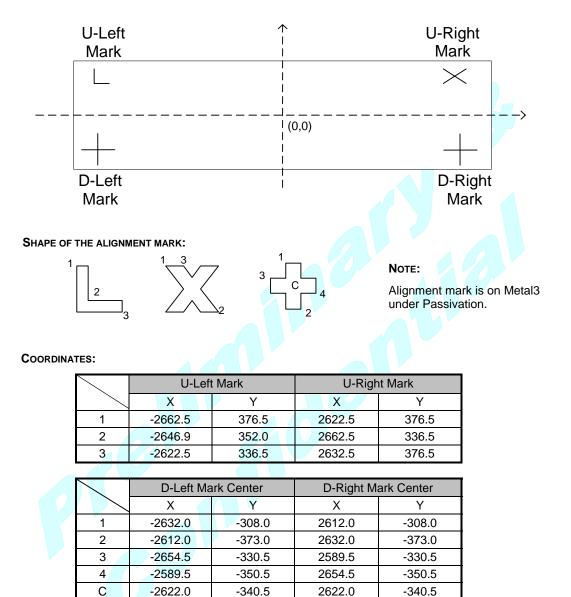
Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{CYI2C}		SCK cycle time	tr+tf ≤ 100nS	250		nS
t _{LPWI2C}	SCK	Low pulse width		65		nS
t _{HPWI2C}		High pulse width		65	_	nS
tr, tf		Rise time and fall time			-	nS
t _{SSDAI2C}		Data setup time		25	-	nS
t _{HDAI2C}	SCK	Data hold time		10	1	nS
t _{SSTAI2C}	SDA	START Setup time		25	-	nS
t _{HSTAI2C}		START Hold time		20	-	nS
t _{SSTOI2C}		STOP setup time		25	1	nS

$(1.8V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{CYI2C}		SCK cycle time	tr+tf ≤ 100nS	300	-	nS
t _{LPWI2C}	SCK	Low pulse width		100	-	nS
t _{HPWI2C}		High pulse width		100	I	nS
tr, tf		Rise time and fall time		-	1	nS
t _{SSDAI2C}		Data setup time		40	-	nS
t _{HDAI2C}	SCK	Data hold time		10	I	nS
t _{SSTAI2C}	SDA	START Setup time		25	1	nS
t _{HSTAI2C}		START Hold time		35	1	nS
t _{SSTOI2C}		STOP setup time		25	_	nS

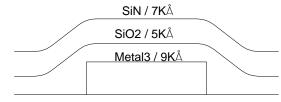


$(1.8V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$


Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{RW}	RST	Reset low pulse width		1	-	μS

High-Voltage Mixed-Signal IC

PHYSICAL DIMENSIONS



ALIGNMENT MARK INFORMATION

(The values of the x-coordinate and the y-coordinate in the table are after rounded.)

TOP METAL AND PASSIVATION:

FOR NON-OTP PROCESS CROSS-SECTION

High-Voltage Mixed-Signal IC

PAD COORDINATES

#	Pad	X	Y	W	Н
1	DUMMY	-2712	380	76	41
2	COM17	-2712	330	76	29
3	COM19	-2712	286	76	29
4	COM21	-2712	242	76	29
5	COM23	-2712	198	76	29
6	COM25	-2712	154	76	29
7	COM27	-2712	110	76	29
8	COM29	-2712	66	76	29
9	COM31	-2712	22	76	29
10	COM33	-2712	-22	76	29
11	COM35	-2712	-66	76	29
12	COM37	-2712	-110	76	29
13	COM39	-2712	-154	76	29
14	COM41	-2712	-198	76	29
15	COM43	-2712	-242	76	29
16	COM45	-2712	-286	76	29
17	COM47	-2712	-330	76	29
18	DUMMY	-2712	-380	76	41
19	COM49	-2534.5	-367	29	76
20	COM51	-2490.5	-367	29	76
21	COM53	-2446.5	-367	29	76
22	COM55	-2402.5	-367	29	76
23	COM57	-2358.5	-367	29	76
24	COM59	-2314.5	-367	29	76
25	COM61	-2270.5	-367	29	76
26	COM63	-2226.5	-367	29	76
27	RIC	-2182.5	-367	29	76
28	CS0	-2031.6	-3 <mark>6</mark> 3	42	82
29	VDDX	-1971.6	-363	42	82
30	CS1	-1911.6	-363	42	82
31	TST4	-1840.6	-363	42	82
32	RST_	-1756.6	-363	42	82
33	CD	-1672.6	-363	42	82
34	D0	-1612.6	-363	42	82
35	D1	-1369.6	-363	42	82
36	VDD	-1309.6	-363	42	82
37	VDD2	-859.2	-363	42	82
38	VDD3	-597.4	-363	42	82
39	VSS2	-427.4	-363	42	82
40	VSS2	-367.4	-363	42	82
41	VSS	-197.4	-363	42	82
42	VSS	-137.4	-363	42	82
43	TST2	25.2	-363	42	82
44	VB1+	85.2	-363	42	82
45	VB1+	145.2	-363	42	82
46	BM0	452.2	-363	42	82
47	VDDX	512.2	-363	42	82
48	BM1	572.2	-363	42	82
49	VB1-	879.2	-363	42	82
50	VB1-	939.2	-363	42	82
51	VB0-	999.2	-363	42	82
52	VB0-	1059.2	-363	42	82
53	VB0+	1416.2	-363	42	82
54	VB0+	1476.2	-363	42	82
J4	VDUT	1710.2	-000	74	02

#	Pad	Х	Y	W	Н
 55	VLCDOUT	1536.2	-363	42	82
56	VLCDIN	1964.2	-363	42	82
57	VDD2	2024.2	-363	42	82
58	COM64	2024.2	-367	29	76
59	COM62	2182.5	-367	29	76
					-
60	COM60	2270.5	-367	29 29	76
61	COM58	2314.5	-367		76
62	COM56	2358.5	-367	29	76
63	COM54	2402.5	-367	29	76
64	COM52	2446.5	-367	29	76
65	COM50	2490.5	-367	29	76
66	COM48	2534.5	-367	29	76
67	DUMMY	2712	-380	76	41
68	COM46	2712	-330	76	29
69	COM44	2712	-286	76	29
70	COM42	2712	-242	76	29
71	COM40	2712	-198	76	29
72	COM38	2712	-154	76	29
73	COM36	2712	-110	76	29
74	COM34	2712	-66	76	29
75	COM32	2712	-22	76	29
76	COM30	2712	22	76	29
77	COM28	2712	66	76	29
78	COM26	2712	110	76	29
79	COM24	2712	154	76	29
80	COM22	2712	198	76	29
81	COM20	2712	242	76	29
82	COM18	2712	286	76	29
83	COM16	2712	330	76	29
84	DUMMY	2712	380	76	41
85	COM14	2574	367	29	76
86	COM12	2530	367	29	76
87	COM10	2486	367	29	76
88	COM8	2442	367	29	76
89	COM6	2398	367	29	76
90	COM4	2354	367	29	76
91	COM2	2310	367	29	76
92	RIC	2266	367	29	76
93	SEG1	2222	367	29	76
94	SEG2	2178	367	29	76
95	SEG3	2134	367	29	76
96	SEG4	2090	367	29	76
97	SEG5	2030	367	29	76
97	SEG6	2040	367	29	76
90	SEG7				
	SEG7	1958 1914	367	29	76 76
100	SEG8 SEG9		367	29 29	76
101		1870	367		76
102	SEG10	1826	367	29	76
103	SEG11	1782	367	29	76
104	SEG12	1738	367	29	76
105	SEG13	1694	367	29	76
106	SEG14	1650	367	29	76
107	SEG15	1606	367	29	76
108	SEG16	1562	367	29	76

#	Pad	Х	Y	W	Н
109	SEG17	1518	367	29	76
110	SEG18	1474	367	29	76
111	SEG19	1430	367	29	76
112	SEG20	1386	367	29	76
113	SEG21	1342	367	29	76
114	SEG22	1298	367	29	76
115	SEG23	1254	367	29	76
116	SEG24	1210	367	29	76
117	SEG25	1166	367	29	76
118	SEG26	1122	367	29	76
119	SEG27	1078	367	29	76
120	SEG28	1078	367	29	76
120	SEG29	990	367	29	76
121	SEG30	990 946	367	29 29	76
122	SEG30		367	29	76
		902		-	-
124	SEG32	858	367	29	76
125	SEG33	814	367	29	76
126	SEG34	770	367	29	76
127	SEG35	726	367	29	76
128	SEG36	682	367	29	76
129	SEG37	638	367	29	76
130	SEG38	594	367	29	76
131	SEG39	550	367	29	76
132	SEG40	506	367	29	76
133	SEG41	462	367	29	76
134	SEG42	418	367	29	76
135	SEG43	374	367	29	76
136	SEG44	330	367	29	76
137	SEG45	286	367	29	76
138	SEG46	242	367	29	76
139	SEG47	198	367	29	76
140	SEG48	154	367	29	76
141	SEG49	110	367	29	76
142	SEG50	66	367	29	76
143	SEG51	22	367	29	76
144	SEG52	-22	367	29	76
145	SEG53	-66	367	29	76
146	SEG54	-110	367	29	76
147	SEG55	-154	367	29	76
148	SEG56	-198	367	29	76
149	SEG57	-242	367	29	76
150	SEG58	-286	367	29	76
151	SEG59	-330	367	29	76
152	SEG60	-374	367	29	76
153	SEG61	-418	367	29	76
154	SEG62	-462	367	29	76
155	SEG63	-506	367	29	76
156	SEG64	-550	367	29	76
157	SEG65	-594	367	29	76
157	SEG66	-638	367	29	76
150	SEG67	-682	367	29	76
160	SEG68	-726	367	29	76
161	SEG69	-770	367	29	76
162	SEG70	-814	367	29	76
163	SEG71	-858	367	29	76

#	Pad	Х	Y	W	Η
164	SEG72	-902	367	29	76
165	SEG73	-946	367	29	76
166	SEG74	-990	367	29	76
167	SEG75	-1034	367	29	76
168	SEG76	-1078	367	29	76
169	SEG77	-1122	367	29	76
170	SEG78	-1166	367	29	76
171	SEG79	-1210	367	29	76
172	SEG80	-1254	367	29	76
173	SEG81	-1298	367	29	76
174	SEG82	-1342	367	29	76
175	SEG83	-1386	367	29	76
176	SEG84	-1430	367	29	76
177	SEG85	-1474	367	29	76
178	SEG86	-1518	367	29	76
179	SEG87	-1562	367	29	76
180	SEG88	-1606	3 <mark>6</mark> 7	29	76
181	SEG89	-1650	367	29	76
182	SEG90	-1694	367	29	76
183	SEG91 🖊	-1738	367	29	76
184	SEG92	-1782	367	29	76
185	SEG93	-1826	367	29	76
186	SEG94	-1870	367	29	76
187	SEG95	-1914	367	29	76
188	SEG96	-1958	367	29	76
189	SEG97	-2002	367	29	76
190	SEG98	-2046	367	29	76
191	SEG99	-2090	367	29	76
192	SEG100	-2134	367	29	76
193	SEG101	-2178	367	29	76
194	SEG102	-2222	367	29	76
195	COM1	-2266	367	29	76
196	COM3	-2310	367	29	76
197	COM5	-2354	367	29	76
198	COM7	-2398	367	29	76
199	COM9	-2442	367	29	76
200	COM11	-2486	367	29	76
201	COM13	-2530	367	29	76
202	COM15	-2574	367	29	76

(The values of the x-coordinate and the y-coordinate in the table are after-rounded.)

High-Voltage Mixed-Signal IC

TRAY INFORMATION

(TBD)

Preliminary Specifications