

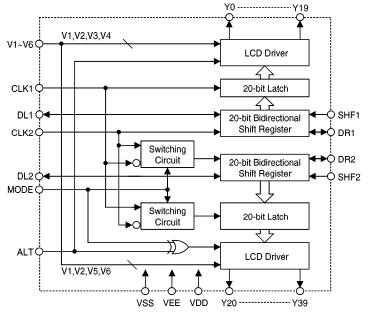
Features

- Power supply - +5V for internal logic circuit - -5V for LCD driver circuit
- 40 internal LCD drivers available
- Bias voltage: static to 1/5 bias

Applications

- Electrical dictionaries
- Portable computers

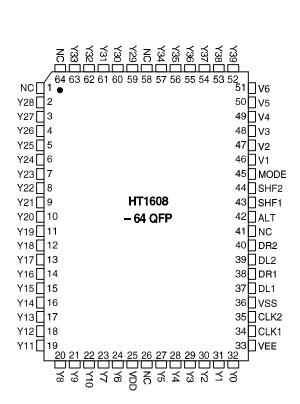
- LCD driver with serial/parallel conversion function
- Common or segment driver output by selection
- Remote controllers
- Calculators


General Description

The HT1608 is an LCD driver LSI with 40 output channels using the CMOS technology. It is equipped with two sets of 20-bit bidirectional shift registers, 20-bit data latches, 20-bit LCD drivers, and logic control circuits. The LSI can convert serial data received from an LCD controller into parallel data and supply LCD driv-

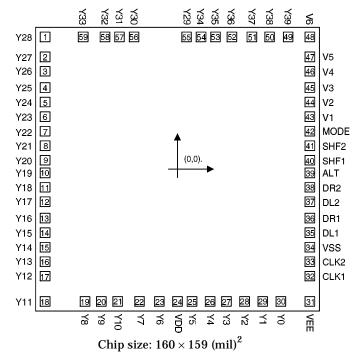
ing waveforms to the LCD panel.

The HT1608 is designed for general purpose LCD drivers. It can drive both static and dynamic drive LCDs. The LSI can be applied to either a common driver or a segment driver.


Block Diagram

1

64 QFP package



3rd Feb '98

2

Pad Coordinates

* The IC substrate should be connected to VDD in the PCB layout artwork.

Unit: mil

Pad No.	X	Y	Pad No.	X	Y	Pad No.	X	Y
1	-73.80	73.22	21	-33.57	-73.22	41	73.80	13.50
2	-73.80	62.10	22	-21.42	-73.22	42	73.80	21.60
3	-73.80	54.00	23	-10.94	-73.22	43	73.80	29.70
4	-73.80	45.90	24	0.81	-73.22	44	73.80	37.80
5	-73.80	37.80	25	8.19	-73.22	45	73.80	45.90
6	-73.80	29.70	26	18.09	-73.22	46	73.80	54.00
7	-73.80	21.60	27	27.99	-73.22	47	73.80	62.10
8	-73.80	13.50	28	37.89	-73.22	48	73.80	73.22
9	-73.80	5.40	29	47.79	-73.22	49	61.60	73.22
10	-73.80	-2.70	30	57.69	-73.22	50	51.35	73.22
11	-73.80	-10.80	31	73.80	-73.22	51	41.99	73.22
12	-73.80	-18.90	32	73.80	-59.40	52	30.06	73.22
13	-73.80	-27.00	33	73.80	-51.30	53	21.78	73.22
14	-73.80	-35.10	34	73.80	-43.20	54	13.68	73.22
15	-73.80	-43.20	35	73.80	-35.10	55	5.58	73.22
16	-73.80	-51.30	36	73.80	-27.00	56	-24.30	73.22
17	-73.80	-59.40	37	73.80	-18.90	57	-32.40	73.22
18	-73.80	-73.22	38	73.80	-10.80	58	-40.50	73.22
19	-51.03	-73.22	39	73.80	-2.90	59	-52.74	73.22
20	-42.03	-73.22	40	73.80	5.40			

3

Pad Description

Pad No.	Pad Name	I/O	Note	Description
1~9	Y28~Y20	0		LCD driver outputs for channel 2
10~23	Y19~Y6	0		LCD driver outputs for channel 1
24	VDD			Power supply (positive)
25~30	Y5~Y0	0		LCD driver outputs for channel 1
31	VEE			LCD power supply
32	CLK1	Ι	Note1	Latch signal for channel 1 on the falling edge CLK1 is used for channel 2 when MODE is set to VSS
33	CLK2	Ι	Note1	Shift signal for channel 1 on the falling edge and used for channel 2 when MODE is set to VSS
34	VSS			Power supply (ground)
35	DL1	I/O		Data input/output of channel 1 shift register
36	DR1	I/O		Data input/output of channel 1 shift register
37	DL2	I/O		Data input/output of channel 2 shift register
38	DR2	I/O		Data input/output of channel 2 shift register
39	ALT	Ι		Alternate signal input for LCD driving waveform
40	SHF1	Ι	Note2	Shift direction selection of channel 1 shift register
41	SHF2	Ι	Note2	Shift direction selection of channel 2 shift register
42	MODE	Ι	Note3	Mode select signal of channel 2
43~44	V1,V2	Ι		LCD bias supply voltage for channels 1 and 2
45~46	V3,V4	Ι		LCD bias supply voltage for channel 1
47~48	V5,V6	Ι		LCD bias supply voltage for channel 2
49~59	Y39~Y29	0		LCD driver outputs for channel 2

4

		Channel 1	Channel 2	
CLK1	_			
	₹	Latch data	Latch data	
CLK2	_			
ULKZ	₽	Shift data	Shift data	

MODE= Hi (VDD)

		Channel 1	Channel 2	
CLK1	_ F	—	Shift data	
ULKI	₹	Latch data	—	
CLK2	_ F	_	Latch data	
ULKZ	₹	Shift data		

Note2 : Shift direction of channels 1 and 2

Shift Direction of Channel 1 (Channel 2)						
SHF1 (SHF2)DL1 (DL2)DR1 (DR2)						
Hi	OUT	IN				
Lo	IN	OUT				

Note3 :

MODE	Chanı	nel 2	ALT	Purpose	
	Latch Data	Shift Data	Polarity		
Hi	CLK2	CLK1	ALT	for Common drive	
Lo	CLK1 🔽	CLK2 🕇	ALT	for Segment drive	

The output levels of channels 1 and 2 are decided by the combination of MODE, ALT and latched data. Refer to the following table:

MODE	Latched Data	ALT	Channel 1 (Y0~Y19)	Channel 2 (Y20~Y39)
	Hi	Hi	V1	V2
Hi	пі	Lo	V2	V1
(VDD)	Lo	Hi	V3	V6
		Lo	V4	V5
	Hi	Hi	V1	V1
Lo		Lo	V2	V2
(VSS)	T	Hi	V3	V5
	Lo	Lo	V4	V6

5

Absolute Maximum Ratings*

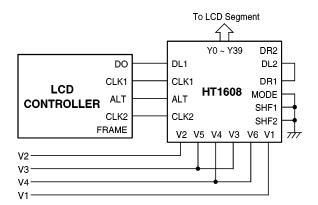
Supply Voltage0.3V to 7V	Storage Temperature50°C to 125°C
Input Voltage V_{SS} –0.3V to V_{DD} +0.3V	Operating Temperature0°C to 70°C

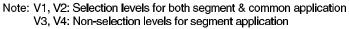
*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(Ta=25°C)

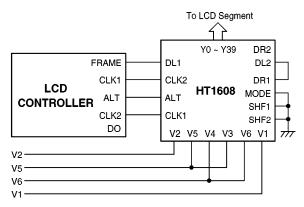
Symbol	Parameter	Test Conditions		Min.	T	M	Unit
	Parameter	V _{DD}	Conditions	MIIN.	Тур.	Max.	Umt
V _{DD}	Operating Voltage	—	_	4.5	_	5.5	V
I _{DD}	Operating Current	5V	No load		100	300	μΑ
ISTB	Standby Current	5V	_	_	1	5	μΑ
F _{CLK2}	Data Shift Frequency	5V	_	_	_	400	kHz
twclk	Clock Pulse Width	5V	_	800	_	_	ns
VIL	"L" Input Voltage	5V	_		_	1	V
VIH	"H" Input Voltage	5V	_	4	_		V
Vol	"L" Output Voltage	5V	I _{OL} =+0.4mA		_	0.4	V
VOH	"H" Output Voltage	5V	I _{OH} =-0.4mA	4.6	_		V
VLCD	LCD Driving Voltage	_	V _{DD} -V _{EE}	5	_	12	V

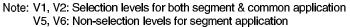

6



Functional Description

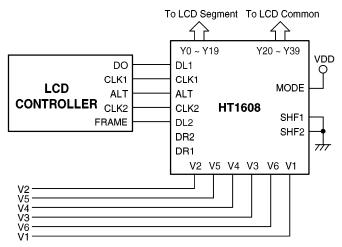
Both Channels 1 and 2 used as segment drivers (MODE=Lo)


When both channels 1 and 2 of the HT1608 are used as segment drivers, they will shift data on the falling edge of CLK2 and shift latch data on the falling edge of CLK1. V3 &V5 or V4 &V6 are shortened in the application circuit as shown in the following figure.



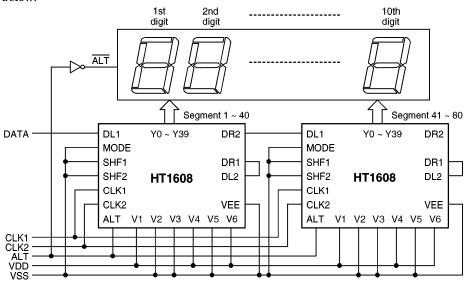
Both Channels 1 and 2 used as common drivers (MODE=Lo)

When both channels 1 and 2 of the HT1608 are used as common drivers, the MODE is set low and the signals (CLK1, CLK2, FRAME) from the controller are connected as shown in the following figure.



7

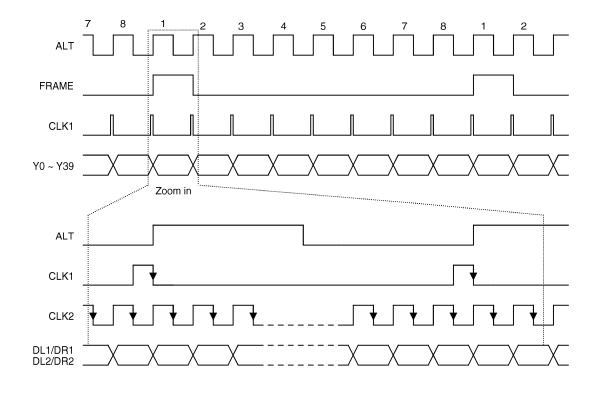
Channel 1 used as a segment driver and channel 2 as a common driver (MODE=Hi)


When channel 2 is used as a common driver, MODE is connected to VDD. Channel 2 will shift data on the rising edge of CLK1 and shift latch data on the rising edge of CLK2.

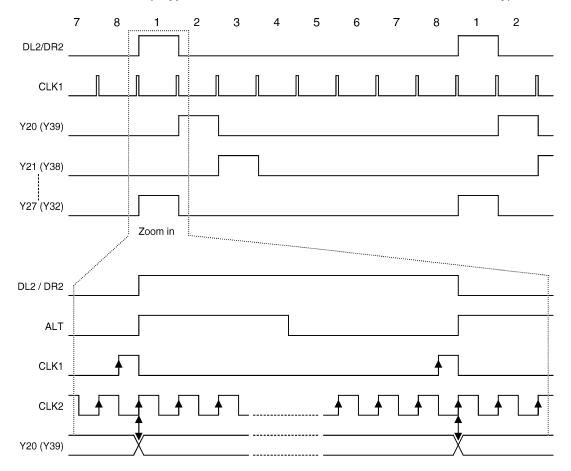
Static Drive

When the HT1608 is used as a static driver, data is transferred on the falling edge of CLK2 and latched on the falling edge of CLK1. The frequency of CLK1 becomes the frame frequency of the LCD driver. The frequency of ALT has to be twice the frequency of CLK1. ALT has to be synchronized on the falling edge of CLK1.

The power supply for the LCD driver is used by shortening V1, V4 and V6 or V2, V3 and V5. One of the LCD output terminals can be used as a common output. The application circuit connections are shown below:

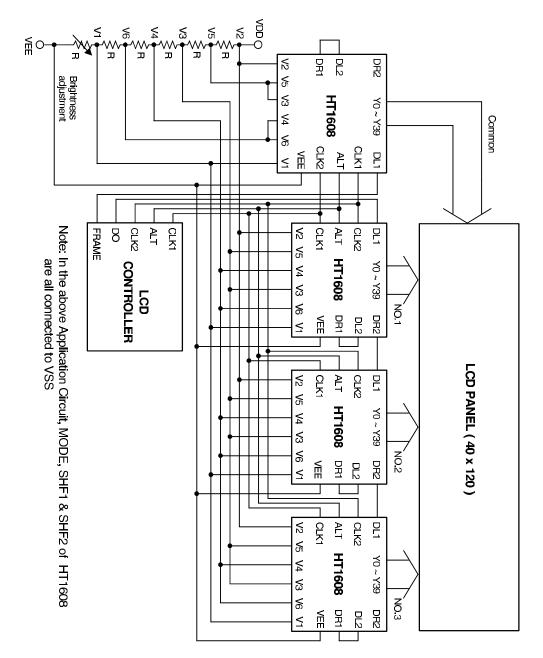


8


Timing Diagram

Segment data waveform (1/8 duty)

9


Common data waveform (A typical waveform of channel 2 as a COMMON driver, 1/8 duty)

3rd Feb '98

10

Application Circuit

11