D365A Electroluminescent Lamp Driver IC

Features
- Integrated Low Noise Circuitry
- High AC Voltage Output
- Circuit Topology Shields EMI
- Drives up to 20in² EL Lamp
- Capacitor or External Clock LF Control
- Available in Lead-Free (Pb-free) and Green MSOP-8 package

Applications
- Cellular Phones and Handsets
- Monochrome LCDs
- Data Organizer / PDAs
- Remote Controls
- DFLX™ EL Keypad Lamps

Rogers DUREL® D365A IC driver is part of a family of highly integrated EL drivers based on Rogers’ patented three-port (3P) topology which offers built-in EMI shielding. The D365A IC and three components make a complete EL lamp driving circuit. Equipped with a patented discharge circuitry, the D365A IC device offers low-noise performance in applications that are sensitive to audible and electrical noise.

Lamp Driver Specifications:
(Using Standard Test Circuit at Ta=25°C unless otherwise specified.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Current</td>
<td></td>
<td>40</td>
<td>1000</td>
<td></td>
<td>nA</td>
<td>E = GND</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I</td>
<td>44</td>
<td>60</td>
<td></td>
<td>mA</td>
<td>E = V+</td>
</tr>
<tr>
<td>Enable Current</td>
<td></td>
<td>15</td>
<td>50</td>
<td>20</td>
<td>uA</td>
<td>E = V+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nA</td>
<td>E=GND</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>Vout</td>
<td>160</td>
<td>175</td>
<td>280</td>
<td>Vpp</td>
<td>E=V+</td>
</tr>
<tr>
<td>Lamp Frequency</td>
<td>LF</td>
<td>236</td>
<td>267</td>
<td>330</td>
<td>Hz</td>
<td>E=V+</td>
</tr>
<tr>
<td>Inductor Frequency</td>
<td>HF</td>
<td>17</td>
<td>19.2</td>
<td>24</td>
<td>kHz</td>
<td>E=V+</td>
</tr>
</tbody>
</table>

Standard Test Circuit

![Standard Test Circuit Diagram]

LIT-I9035 Rev A05
Load B*

Load B approximates a 5in² (32.3cm²) EL lamp.

Typical Output Waveform

Absolute Maximum Ratings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Unit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V+</td>
<td>2.5</td>
<td>6.5</td>
<td>V</td>
<td>E = V+</td>
</tr>
<tr>
<td>Operating Range</td>
<td></td>
<td>-0.5</td>
<td>7.0</td>
<td></td>
<td>E = GND</td>
</tr>
<tr>
<td>Withstand Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable voltage</td>
<td>E</td>
<td>-0.5</td>
<td>(V+) + 0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Lamp Output Voltage</td>
<td>V_peak</td>
<td></td>
<td>140</td>
<td>V</td>
<td>Positive peak Voltage</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>Pd</td>
<td></td>
<td>250</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_a</td>
<td>-20</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_s</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Note: The above table reflects ratings only. Functional operation of the device at these ratings or any other above those indicated in the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Physical Data:

<table>
<thead>
<tr>
<th>PIN #</th>
<th>NAME</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L+</td>
<td>Positive input to inductor</td>
</tr>
<tr>
<td>2</td>
<td>Base</td>
<td>PNP transistor base connection</td>
</tr>
<tr>
<td>3</td>
<td>CHF</td>
<td>High Frequency oscillator capacitor/clock input</td>
</tr>
<tr>
<td>4</td>
<td>V+</td>
<td>DC power supply input</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>System enable; HI=On</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>System ground connection</td>
</tr>
<tr>
<td>7</td>
<td>Vout</td>
<td>AC output to Lamp</td>
</tr>
<tr>
<td>8</td>
<td>L-</td>
<td>Negative input to inductor</td>
</tr>
</tbody>
</table>
Typical Performance Characteristics Using Standard Test Circuit

Output Frequency vs. DC Supply Voltage

Output Frequency vs. Ambient Temperature

Output Voltage vs. DC Supply Voltage

Output Voltage vs. Ambient Temperature

Supply Current vs. DC Supply Voltage

Supply Current vs. Ambient Temperature
Electroluminescent (EL) lamps are essentially capacitors with one transparent electrode and a special phosphor material in the dielectric. The phosphor glows when a strong AC voltage is applied across the EL lamp electrodes. The required AC voltage is typically not present in most systems and must be generated from a low voltage DC source. Rogers developed its patented three-port (3P) switch-mode inverter circuit to convert the available DC supply to an optimal drive signal for high brightness and low-noise EL lamp applications. Rogers’ 3P topology offers the simplicity of a single DC input, single AC output, and a shared common ground that provides an integrated EMI shielding.

The D365A IC drives the EL lamp by repeatedly pumping charge through an external inductor with current from a DC source and discharging into the capacitance of the EL lamp load. With each high frequency (HF) charging cycle the voltage on the lamp is increased. After 32 HF charging cycles, the lamp voltage is discharged to ground in the period of 4 HF cycles. Then, the polarity of the inductive charging is reversed, and the charging and discharging cycles are repeated. By this means, a low frequency (LF) alternating positive and negative voltage is developed at the single output lead of the device to one of the electrodes of the EL lamp. Commonly connected to ground, the other lamp electrode can then be considered as electrical shielding for any underlying circuitry in the application.

The EL driving system is divided into several parts: on-chip logic and control, on-chip high voltage output circuitry, discharge logic circuitry, and off-chip components. The on-chip logic controls the lamp operating frequency (LF) as well as the inductor switching frequency (HF), and the HF and LF duty cycles. These signals are combined and buffered to drive the high voltage output circuitry. The output circuitry handles the power through the inductor and delivers the high voltage to the lamp. The integrated discharge logic circuit enables the low-noise functionality of this EL driver. The selection of off-chip components provides a degree of flexibility to accommodate various lamp sizes, system voltages, and brightness levels. Since a key objective of EL driver systems is to save space and cost, required off-chip components are kept to a minimum.

Rogers also provides a D365A IC Designer’s Kit, which includes a PC board intended to aid you in developing an EL lamp driver configuration that meets your requirements using the D365A IC. A section on designing with the D365A IC is included in this datasheet to serve as a guide to help you select the appropriate external components to complete your D365A EL driver system.

Typical D365A IC configurations for driving EL lamps in various applications are shown below. The expected system outputs, such as lamp luminance; lamp output frequency and voltage; and average supply current draw for the various circuit configurations are also shown with each respective figure.
Typical D365A EL Driver Configurations

3.3V Handset LCD

Typical Output
Luminance = 5.2 fl (17.8 cd/m²)
Lamp Frequency = 278 Hz
Supply Current = 17 mA
Vout = 186 Vpp
Load: 2 in² (12.90 cm²) DUREL 3 Green EL

3.3V Handset LCD + Keypad

Typical Output
Luminance = 6.7 fl (23.0 cd/m²)
Lamp Frequency = 259 Hz
Supply Current = 56 mA
Vout = 204 Vpp
Load: 4 in² (25.80 cm²) DUREL 3 Green EL

5.0V LCD Backlight

Typical Output
Luminance = 7.1 fl (24.3 cd/m²)
Lamp Frequency = 353 Hz
Supply Current = 34 mA
Vout = 190 Vpp
Load: 6 in² (38.71 cm²) DUREL 3 Green EL
Designing with A D365A IC Driver

I. Lamp Frequency Capacitor (CHF) Selection

Selecting the appropriate value of CHF capacitor will specify the inductor switching frequency (HF) and the lamp frequency (LF) of the D365A IC driver. A divider circuit in the internal oscillator circuitry of the D365A IC divides the inductor switching frequency by 72 to get the lamp frequency (LF = HF/72). Lamp frequencies of 200 – 500 Hz are typically used for longer EL lamp life. Figure 1 graphically represents the effect of CHF capacitor value on the lamp frequency oscillator at V+=3.3V. In this example at V+=3.3V, LF = 2000 nF-Hz/CHF.

![Figure 1: Typical Lamp Frequency vs. CLF Capacitor](image1.png)

Alternatively, a high frequency clock input may be connected to the CHF pin of the D365A IC to specify the output driver frequency. The internal oscillator circuitry in the D365A IC divides the input clock frequency by 72 to get the output frequency. Therefore, for example, to get a 250Hz lamp frequency from a D365A IC, the input clock signal must be 18kHz.

The selection of the capacitor value can also affect the brightness of the EL lamp because of its control of LF and HF. Although input voltage and lamp size can change EL lamp frequency as well, LF mainly depends on the CHF value selected or the frequency of the input clock signal to CHF. Figure 2 shows typical brightness of a D365A IC circuit with respect to lamp frequency on different EL lamp sizes. In this example, the supply voltage and inductor values were kept constant while only varying frequency.

![Figure 2: Luminance vs. Lamp Frequency](image2.png)
II. **Inductor (L) Selection**

The external inductor (L) selection for a D365A IC circuit greatly affects the output capability and current draw of the driver. A careful designer will balance current draw considerations with output performance in the choice of an ideal inductor for a particular application. Figures 3 and 4 show typical brightness and current draw of a D365A IC circuit with different inductor values, lamp sizes, and supply voltages. Please note that the DC resistance (DCR) of inductors with the same nominal inductance value may vary with manufacturer and inductor type. Therefore, inductors made by a different manufacturer may yield different outputs, but the trend of the different curves should be similar. Lamp luminance is also a function of lamp size. In each example, a larger lamp will have less luminance with approximately the same current draw.

![Figure 3: Luminance and current vs. inductor value.](Conditions: V+=3.3V, 2in² EL Lamp)

![Figure 4: Luminance and current vs. inductor value.](Conditions: V+=5.0V, 4in² EL Lamp)
III. PNP Transistor Selection

The D365A IC requires an external PNP transistor to complete the high voltage 3P circuitry. Ideally, this transistor should have a minimum collector-emitter breakdown voltage higher than the required peak voltage output of the EL driver. It should also have a high DC current gain (>50) and fast switching characteristics.

Rogers typically recommends the MMBTA56 surface mount amplifier transistor for general purpose because it is a standard device part number supplied by several large manufacturers. The MMBTA56 has a breakdown voltage that is normally above 100V although it has a minimum rating of 80V only. The counterpart internal NPN transistor in the D365A IC has a minimum 100V breakdown, with typical breakdown value above 120V. Under most nominal design considerations using the D365A IC, the MMBTA56 is an appropriate selection. Nevertheless, caution is advised to limit designs well within the maximum output voltage ratings of all devices to avoid failure of the IC or any required external components.

D365A IC Design Ideas

I. Alternate Lamp Connection

In some applications it may be more convenient to connect the EL lamp to the supply voltage rather than ground. This type of connection (shown below) provides design flexibility and does not degrade EL driver performance. This configuration may also be used to minimize any positive DC bias on the lamp.
II. Driving Multi-segment Lamps

The D365A IC may be used to drive multiple EL lamp segments. An external transistor switching circuit is used to turn each lamp segment on or off independently or simultaneously. A high signal at the corresponding E input will enable the corresponding lamp segment. In this configuration, EL Lamp 1 is always turned on when the IC is enabled. Otherwise, always make sure that at least one lamp segment is selected to be on when the D365A IC is enabled.

III. Lamp Frequency Control with an External Clock Signal

An external clock signal may be used to control the inductor oscillating frequency (HF) and, consequently, the EL lamp frequency (LF) of the D365A IC. HF and LF can be varied to synchronize the EL driver with other elements in the application. An internal divider network in the IC creates a ratio of HF/LF=72.
IV. Controlling EL Brightness through Clock Pulse Width Modulation

Pulse-width modulation of an external clock signal that controls the inductor oscillating frequency may also be used to regulate the brightness of an EL lamp. In this circuit, when the positive duty cycle of the external clock is at 25%, the lamp is at full brightness. Incremental dimming occurs as the positive duty cycle is increased to as high as 75%. This scheme may also be used inversely to regulate lamp brightness over the life of the battery or to compensate for lamp aging. In these cases, positive duty cycle may be incrementally increased as part of a feedback control in the application. (Note: Operation at duty cycles higher than 75% or lower than 25% is not recommended.)

V. Two-Level Dimming Control

Two level dimming may be achieved, as captioned in the example shown below. When DIM is low, the external PNP transistor is saturated and the EL lamp runs at full brightness. When DIM is high, the external PNP turns off and the 47Ω resistor reduces the voltage at (V+) and dims the EL lamp.
VI. High EL Brightness through Supply Voltage Doubling

An external voltage boost circuit may be used to increase the voltage supplied to the D365A IC. In the following example, the LM2661 is used as a positive voltage doubler.

VII. EL Lamp Output Regulation

Regulating the DC supply input voltage to the D365A IC will result in a constant brightness level from the EL lamp, regardless of battery voltage. In this example, a voltage regulator is used.
XIII. Solder Re-Flow Recommendations

Classification Reflow Profiles

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Sn-Pb Eutectic Assembly</th>
<th>Pb-Free Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large Body</td>
<td>Small Body</td>
</tr>
<tr>
<td>Average ramp-up rate (T<sub>L</sub> to T<sub>P</sub>)</td>
<td>3°C/second max.</td>
<td>3°C/second max.</td>
</tr>
<tr>
<td>Preheat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Temperature Min (T<sub>S,min</sub>)</td>
<td>100°C</td>
<td></td>
</tr>
<tr>
<td>-Temperature Max (T<sub>S,max</sub>)</td>
<td>150°C</td>
<td></td>
</tr>
<tr>
<td>-Time (min to max) (t<sub>S</sub>)</td>
<td>60-120 seconds</td>
<td></td>
</tr>
<tr>
<td>T<sub>S,max</sub> to T<sub>L</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Ramp-up Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time maintained above: Temperature (T<sub>L</sub>)</td>
<td>183°C</td>
<td></td>
</tr>
<tr>
<td>-Time (T<sub>L</sub>)</td>
<td>60-150 seconds</td>
<td></td>
</tr>
<tr>
<td>Peak Temperature (T<sub>P</sub>)</td>
<td>225 +0/-5°C</td>
<td>240 +0/-5°C</td>
</tr>
<tr>
<td>Time within 5°C of actual Peak Temperature (T<sub>P</sub>)</td>
<td>10-30 seconds</td>
<td>10-30 seconds</td>
</tr>
<tr>
<td>Ramp-down Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 25°C to Peak</td>
<td>6°C/second max.</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>6 minutes max.</td>
<td></td>
</tr>
</tbody>
</table>

Note: All temperatures refer to topside of the package, measured on the package body surface.

Note: All temperatures refer to IPC/JEDEC J-STD-020B.

Figure 5-1 Classification Reflow Profile

LIT-I9035 Rev A05 Page 12 of 13
Ordering Information

The D365A IC is available in standard or Pb-free Green MSOP-8 package per tape and reel. A D365A IC Designer’s Kit (1DDD365AA-K01) provides a vehicle for evaluating and identifying the optimum component values for any particular application using D365A IC. Rogers’ engineers also provide full support to customers, including circuit optimization and application retrofits.

RECOMMENDED PAD LAYOUT

MSOPs in Tape & Reel:
1DDD365AA-MO2
1DDD365AA-NL2

Embossed tape on 360mm diameter reel per EIA-481-2. 2500 units per reel. Quantity marked on reel label.

The information contained in this data sheet is intended to assist you in designing with Rogers’ EL systems. It is not intended to and does not create any warranties, express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on the data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers’ EL systems for each application.

These EL drivers are covered by one or more of the following U.S. patents: #5,313,141; 5,347,198; #5,780,870; #5,677,599; #5,789,870; #6,043,610;#5,780,975 Corresponding foreign patents are issued and pending

The world runs better with Rogers.™