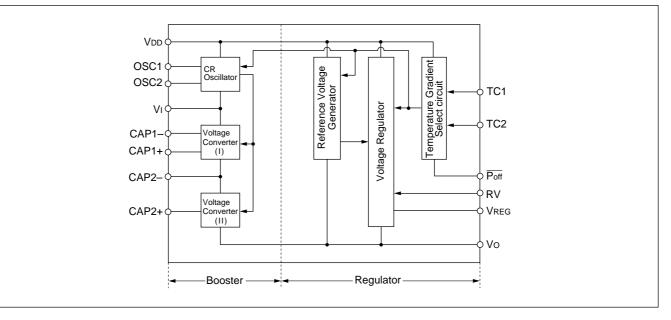
EPSON

SCI7661Cob/Mob DC-DC Converter

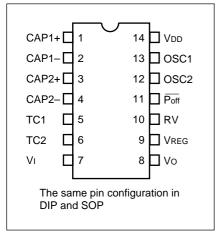
- 95% Typical Power Efficiency
- Doubled or Tripled Output Voltage
- Internal Voltage Regulator

DESCRIPTION

The SCI7661CoB/MoB CMOS DC-DC Converter features high operational performance with low power dissipation. It consists of two major parts: the booster circuitry and the regulator circuitry. The booster generates a doubled output voltage (-3.6V to -12V) or tripled output voltage (-5.4V to -18V) from the input (-1.8 to -6V). The regulator is capable of setting the output to any desired voltage. The regulated voltage can be given one of the three threshold temperature gradients.


■ FEATURES

- High performance with low power dissipation
- Simple conversion of VI (-5V) to |VI | (+5V), 2 | VI | (+10V), 2VI (-10V) or 3VI (-15V)
- On-chip output voltage regulator
- Power conversion efficiency Typ.95%
- Temperature gradient for LCD power supply 0.1%/°C, -0.4%/°C or -0.6%/°C
- Power off by external signals Stationary current at power off Max. 2µA
- Cascade connection two device connected: VI = -5V, VO = -20V)
- On-chip C-R oscillator
- Package SCI7661CoB: DIP-14pin (plastic)


SCI7661MoB: SOP5-14pin (plastic)

SCI7661MBB: SSOP2-16pin (plastic)

■ PIN CONFIGURATION

■ PIN DESCRIPTION

Pin name	No.	Function			
CAP1+, CAP1-	1, 2	Terminal for connection of capacitor for doubler			
CAP2+, CAP2-	3, 4	Terminal for connection of capacitor for tripler			
TC1, TC2	5, 6	Temperature gradient selection terminal			
VI	7	Power supply terminal (negative, system supply GND)			
Vo	8	Output terminal at tripling			
Vreg	9	Regulated voltage output terminal			
RV	10	Regulated voltage control terminal			
Poff	11	Vreg output ON/OFF control terminal			
OSC2, OSC1	12, 13	Oscillation resistor connection terminal			
Vdd	14	Power supply terminal (positive system supply Vcc)			

■ ABSOLUTE MAXIMAM RATINGS

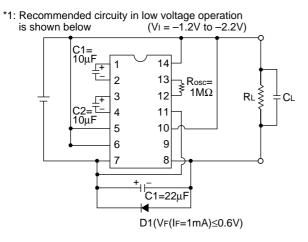
(VDD = 0V)

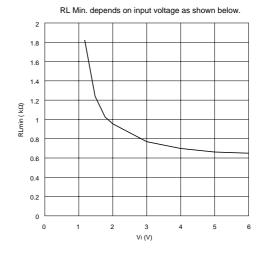
Rating	Symbol	Min.	Max.	Unit	Remark
	Vi	-20/N	VDD+0.3	V	N = 2 : Doubler
Input supply voltage	VI			V	N = 3 : Tripler
Input terminal voltage	Vi	VI-0.5	VDD+0.3	V	OSC1, Poff
input terminal voltage	VI	Vo-0.5	VDD+0.3	V	TC1, TC2, RV
Output voltage	Vo	-20.0		V	
Allowable loss	Pd		300	mW	
Operating temperature	Topr	-40	85	°C	Plastic package
Storage temperature	Tstg	-55	150	°C	
Soldering temperature and time	Tsol	260°C, 10s (at lead)		-	

Note: When this IC is soldered in the solder-reflow process, be sure to maintain the reflow furnace at the curve shown in "Fig. 3-5 Temperature Profile for Standard SMD Package (QFP, SOP, PLCC and etc.) of this DATA BOOK. And this IC can not be exposed to high temperature of the solder dipping.

ELECTRICAL CHARACTERISTICS

 $(VDD = 0V, VI = -5V, Ta = -40 \text{ to } 85^{\circ}C)$


Characteristic	Symbol	Min.	Тур.	Max.	Unit	Condition
Input supply voltage	Vi	-6.0		-1.8	V	
	Vo	-18.0			V	
Output voltage	VREG	-18.0		-2.6	V	$RL = \infty$, $RRV = 1M\Omega$
	VILLO					Vo = -18V
Regulator operating voltage	Vo	-18.0		-3.2	V	
Booster current consumption	lopr1		40	80	μA	$RL = \infty$, $ROSC = 1M\Omega$
Regulator current	lopr2		5.0	12.0	μA	$RL = \infty$, $RRV = 1M\Omega$
consumption						Vo = -15V
Stationary current	IQ			2.0	μA	$TC2 = TC1 = VO, RL = \infty$
Oscillation frequency	fosc	16	20	24	kHz	$Rosc = 1M\Omega$
Output impedamce	Rout		150	200	Ω	IO = 10mA
Booster power conversion efficiency	Peff	90	95		%	IO = 5mA
Regulated output voltage	$\Delta VREG$		0.0		0/ //	-18V < V0 < -8V
fluctuation	$\Delta VO \bullet VREG$	0.2			%/V	VREG = -8V, RL = ∞ , Ta = 25°C



Characteristic	Symbol	Min.	Тур.	Max.	Unit	Condition
						Vo = -15V, Vreg = -8V,
Regulated output	$\Delta VREG$		5.0		Ω	Ta = 25°C
load fluctuation	ΔΙΟ					0 < IO < 10mA, TC1 = VDD
						TC2 = VO
Regulated output						$RSAT = \Delta(VREG - VO) / \Delta IO$
saturation resistance	RSAT		8.0		Ω	0 < IO < 10mA, RV = VDD,
						Ta = 25°C
	VRV0	-2.3	-1.5	-1.0		TC2 = V0, TC1 = VDD, Ta = 25°C
Reference voltage	VRV1	-1.7	-1.3	-1.1	V	TC2 = TC1 = Vo, Ta = 25°C
	VRV2	-1.1	-0.9	-0.8		TC2 = VDD, TC1 = VO, Ta = 25°C
	Сто	-0.25	-0.1	-0.01		$CT = \frac{ VREG(50^{\circ}C) + VREG(0^{\circ}C) }{ VREG(0^{\circ}C) }$
Temperature Gradient	CT1	-0.5	-0.4	-0.3	%/°C	$CT = \frac{50^{\circ}C - 0^{\circ}C}{50^{\circ}C}$
	Ст2	-0.7	-0.6	-0.5		1
						[×] VREG(25°C) ×100
Input leakage current	١L			2.0	μA	Poff, TC1, TC2, OSC1, RV pins

■ RECOMMENDED OPERATING CONDITIONS

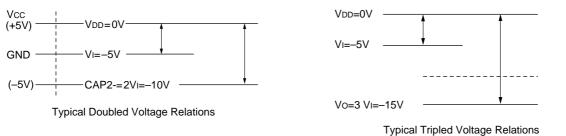
Condition	Symbol	Min.	Max.	Unit	Remark
Poostor start voltage	VSTA		-1.8	V	$Rosc = 1M\Omega, \ C_3 \ge 10 \mu F^{*1}$
Booster start voltage	VSIA		-1.0	v	CL/C ₃ \leq 1/20, Ta = -20 to 85°C
Booster stop voltage	VSTP	-1.8		V	$Rosc = 1M\Omega$
Output load resistance	R∟	RL Min.*2		Ω	
Output load current	Ιουτ		20	mA	
Oscillation frequency	fosc	10	30	kHz	
Extarnal resistance for oscillation	Rosc	680	2000	kΩ	
Capacitor for booster	C1,C2,C3	3.3		μF	
Regulated output adjustable resistance	Rrv	100	1000	kΩ	

(Ta = -30 to 85°C)

■ CIRCUIT DESCRIPTION

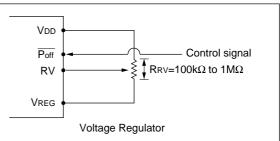
C-R Oscillator

The SCI7661CoB/MoB contains a C-R oscillator for internal oscillation. It consists of an external resistor Rosc connected between the OSC1 pin and OSC2 pin.


Voltage Converters

The voltage converters double/triple the input supply voltage (VI) using clocks generated by the C-R oscillator.

OSC1


OSC2

C-R Oscillation

Reference Voltage Generator and Voltage Regulator

The reference voltage generator produces reference voltage needed for operation of regulator circuit. The voltage regulator is used to regulate a boosted output voltage and its circuit contains a power-off function which uses signals from the system for on-off control of the Vreg output.

OSC1

OSC2

≹ Rosc

___] [] [] [] External Clock

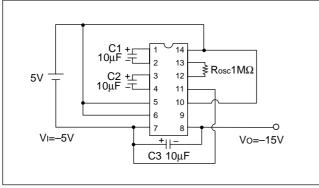
Open

External Clock Operation

Temperature Gradient Selector Circuit

The SCI7661CoB/MoB provides the VREG output with a temperature gradient suitable for LCD driving. (between VDD and VREG)

Poff	TC2	TC1	Temp. Gradient	VREG Output	CR oscillation	Remarks
1(Vdd)	L(Vo)	L(Vo)	-0.4%/°C	ON	ON	
1	L	H(Vdd)	-0.1%/°C	ON	ON	
1	H(Vdd)	L	-0.6%/°C	ON	ON	
1	Н	Н	-0.6%/°C	ON	OFF	Cascade connection
0(VI)	L	L	-	OFF (Hi-Z)	OFF	
0	L	Н	-	OFF (Hi-Z)	OFF	
0	Н	L	-	OFF (Hi-Z)	OFF	
0	Н	Н	-	OFF (Hi-Z)	ON	Without regulation


Temperature Gradient Assignment

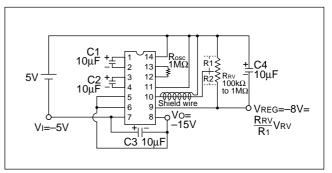
Note: The potential at Low level is different between the $\overline{\text{Poff}}$ pin and the TC1/TC2 pin.

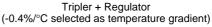
BASIC EXTERNAL CONNECTION

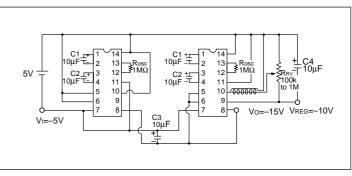
Voltage Doubler and Tripler

A doubled voltage can be obtained at Vo (CAP2-) by disconnecting capacitor C2 from the tripler configuration and shorting CAP2- (pin 4) and Vo (pin 8).

Voltage Tripler

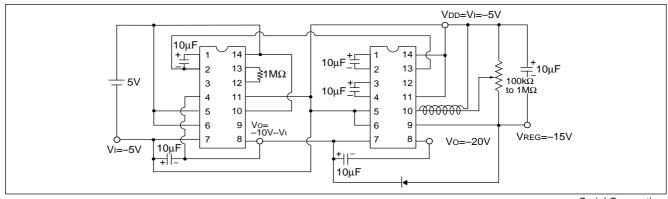

Parallel Connection


Parallel connections of n circuits can reduce Rout to about 1/n, that output impedance Rout can be reduced by connecting serial configuration. A single smoothing capacitor C3 can be used commonly for all parallely connected circuit.


In parallely connection, a regulated output can be obtained by applying the regulation circuit to only one of the n parallely connected circuit.

• Voltage Tripler + Regulator

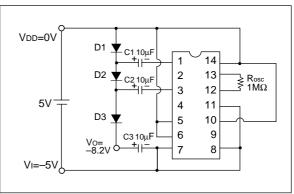
VREG output is given a temperature gradient, after boosted output VO regulated. In this connection, both VO and VREG can be taken out at the same time.



Parallel Connection

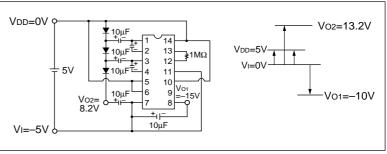
Cascade Connection

Cascade Connection of SCI7661CoB/MoB (by connecting VIN and VOUT of one stage to VDD and VI respectively of the next stage) further increase the output voltage. Note, however, that the serial connection increases the output impedance.



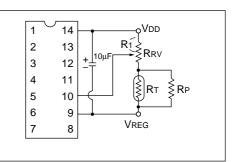
Serial Connection

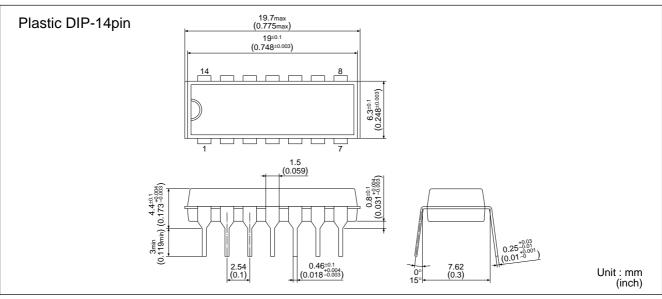
Positive Voltage Conversion


The input voltage can be doubled or tripled toward the positive side. (In the doubler configuration, capacitor C2 and diode D3 are disconnected and the diode D3 shorted at the both ends.) In this case, however, the output voltage decrease by VF (forward voltage). For example VDD = 0V, VI = -5V and VF = 6.0V, then VO = 10V -3 × 0.6V = 8.2V (if doubled, 5V -2 × 0.6V = 3.8V)

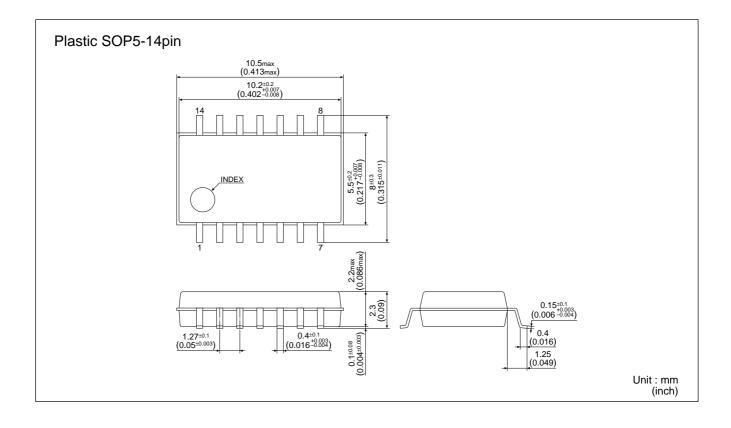
Positive Voltage Conversion D1, D2, D3: Shottky diodes with small VF are recommended.

Negative Voltage Conversion + Positive Voltage Conversion


This circuit produces outputs of -15V and +8.2V from the -5V input. Note that this configuration causes higher output impedance than in a single function (negative or positive voltage converter.)


Negative Voltage Conversion + Positive Voltage Conversion

Changing the Temperature Gradient through Use of External Temperature Sensor (Thermistor)


The SCI7661CoB/MoB has a temperature gradient selector circuit in its regulator. It selects any one of the three gradients: -0.1%/°C, -0.4%/°C and -0.6%/°C. It is necessary that the temperature gradient can be changed to any other value by connecting a thermistor in series to the output voltage control resistor RRV.

Example of Change of Temperature Gradient

■ PACKAGE DIMENSIONS

NOTICE:

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

© Seiko Epson Corporation 2000 All right reserved.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

SEIKO EPSON CORPORATION

ELECTRONIC DEVICES MARKETING DIVISION

IC Marketing & Engineering Group

ED International Marketing Department I (Europe, U.S.A) 421-8 Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: 042-587-5812 FAX: 042-587-5564

ED International Marketing Department II (ASIA) 421-8 Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: 042-587-5814 FAX: 042-587-5110 Electronic devices information on the Epson WWW server. http://www.epson.co.jp/device/

