Electroluminescent Lamp Drivers
EL Lamp Applications

- Pagers
- Caller ID
- Appliances
- Telephones
- Thermostats
- Weight Scales
- Cellular Phones
- Digital Compasses
- HPCs (Handheld PCs)
- Temperature Monitors
- Automotive Dashboards
- GPS Handheld Receivers
- PDAs (Personal Digital Assistants)
- Watches and Alarm Clocks
- Test and Medical Equipment
- TV/VCR/Audio/Cable Box Remote Controllers
IMP, Inc. - Company Profile

IMP, Inc. designs, manufacturers and markets standard-setting analog integrated circuits and specialty analog wafer foundry processes for data communications interface and power management applications in computer, communications and control systems. IMP products are sold through a worldwide network of representatives and distributors.

Company Facilities

IMP headquarters and ISO 9001 certified wafer fabrication and test facility are located in San Jose, California. A product development center is located in Pleasanton, California. The company employs 188 people.

Principal Markets

Data Communications Interface – Data communications components, such as PCM digital switch and Small Computer Systems Interface (SCSI) terminator integrated circuits.

Power Management – Devices to generate, distribute, protect and manage thermal and power consumption characteristics of desktop and portable computers, mobile and wireless communication devices, and battery powered electronic systems. Example products include electroluminescent lamp drivers, Universal Serial Bus (USB) power switches, microprocessor supervisors, low dropout voltage regulators, and high-frequency switching converters.

Wafer Fabrication and Manufacturing Services

High-volume, analog and mixed-signal wafer foundry services on low-power, high-voltage, CMOS, BiCMOS, Bipolar and EEPROM processes, including turnkey packaging and test capabilities. Fabrication services include database production using IMP standard processes, process development and porting of customer-owned technology.

For More Information

Visit the IMP web site at www.impweb.com; email info@impinc.com or contact IMP headquarters at 408.432.9100.
Table of Contents

EL Driver Product Line Summary ... iv

EL Lamp Driver Development Kits ... viii

Data Sheets
- IMP522 ... 1
- IMP525 ... 7
- IMP527 ... 13
- IMP528 ... 19
- IMP560 ... 25
- IMP803 ... 31

Die Specifications
- IMP525 - Die Specifications ... 39
- IMP527 - Die Specifications ... 40
- IMP528 - Die Specifications ... 41
- IMP560 - Die Specifications ... 42
- IMP803 - Die Specifications ... 43

Application Notes
- AN1 - IMP803 Evaluation Board ... 45
- AN4 - EL Driver Demonstration Boards ... 51

Package Information ... 53

Tape and Reel Specifications ... 54

IMP Sales Offices and Representatives ... 57

U.S. Distributors ... 59

IMP International Sales Locations .. 60

Map to IMP - San Jose, CA, USA .. 62

Quality at IMP - Our Policy .. 63

Power Management Products .. 65
 - \(\mu \)P Supervisor Products ... 65-67
 - USB Power Switches .. 67

Sample Request Form ... 68
IMP Electroluminescent Lamp Drivers

IMP electroluminescent lamp drivers incorporate four EL lamp driving functions on-chip. These are the boost switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. Few external components are needed: one inductor, one diode, one capacitor and two resistors. The resistors allow independent adjustment of boost converter frequency and EL lamp drive frequency. Adjustable lamp drive frequency allows control over lamp color and power dissipation. All devices can be disabled for power saving.

All devices are available in chip form and small MicroSO and SO packages. Tape and reel shipment is available without additional cost.
IMP525: Single Cell Battery Powered Electroluminescent Lamp Driver/Inverter

The IMP525 Electroluminescent (EL) lamp driver is designed for systems that must operate down to 1V and below. The input supply voltage range is 0.9V to 2.5V. Typical output lamp drive voltage is 112V peak-to-peak. EL lamps of up to 6nF capacitance can be driven to high brightness.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to 1µA typical with a VDD of 1.5V. Connecting RSVP, the oscillator frequency setting resistor, to ground, can disable the chip. A disable pad, accessible only on the die, can also be used to disable the driver (active low). An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 112V peak-to-peak. This conserves power and extends battery life.

Key Features
- **Wide operating voltage range** - from 0.9V to 2.5V
- **Simple design requires few passive components**
- **112V peak-to-peak typical AC output voltage**
- **Adjustable output frequency controls lamp color and power consumption**
- **Adjustable converter frequency minimizes circuit power consumption**
- **Disable mode extends battery life**
- **Disable current 1µA typical**
- **Compact MicroSO package and die option**
- **Same pinout as IMP803**
The IMP527 is an Electroluminescent (EL) lamp driver designed for systems that must operate down to 1 volt and below. The input supply voltage range is 0.9V to 2.5V. Typical output lamp drive voltage is 180V. All four EL lamp-driving functions are on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6nF capacitance can be driven to high brightness.

The circuit requires few external components; one inductor, one diode, one capacitor and two resistors. The resistors set the frequency for the two oscillators.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to 1µA typical with a VDD of 1.5V. The chip can be disabled by connecting RSW, the oscillator frequency setting resistor, to ground. A disable pad (active low), accessible only on the die, can also be used to disable the driver.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 180V peak-to-peak. This conserves power and extends battery life.

The IMP527 is available in MicroSO and SO-8 packages and in die form.

Key Features
- Wide operating voltage range - from 0.9V to 2.5V
- Simple design requires few passive components
- 180V peak-to-peak typical AC output voltage
- Adjustable output frequency controls lamp color and power consumption
- Adjustable converter frequency minimizes circuit power consumption
- Disable mode extends battery life
- Disable current 1µA typical
- Compact MicroSO package option

The IMP528 is an Electroluminescent (EL) lamp driver with the four EL lamp driving functions on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. The IMP528 drives EL lamps of up to 50nF capacitance to high brightness; EL lamps with capacitances greater than 50nF can be driven, but will be lower in light output. The typical regulated output voltage that is applied to the EL lamp is 220V peak-to-peak. The circuit requires few external components; a single inductor, single diode, two capacitors and three resistors. Two of these resistors set the frequency for two internal oscillators.

Unlike other EL lamp drivers, the IMP528 does not require an external protection resistor in series with the EL lamp.

The IMP528 operates over a 2.0V to 6.5V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP528. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications.

An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 220V peak-to-peak. This conserves power and extends battery life.

The IMP528 is available in MicroSO and SO-8 packages and in die or wafer form.

Key Features
- 220V peak-to-peak typical AC output voltage
- Low Power: 420µA typical VDD current
- Wide operating voltage range - from 2.0V to 6.5V
- Large output load capability - drives lamps with more than 50nF capacitance
- Eliminates external protection resistor in series with EL lamp
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- High-Voltage CMOS Process
- MicroSO package option
IMP560: Power Efficient EL Lamp Driver

The IMP560 is designed for systems with modest EL lamp drive voltage requirements. It is ideal for low ambient light applications or where small lamps are used. With just one-half the inductor current of the IMP803, the IMP560 reduces system power consumption and extends battery life. Input supply voltage range is 2.0V to 6.5V and quiescent current is a low 420µA. Typical EL lamp drive voltage is 120V peak-to-peak.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 120V peak-to-peak. This conserves power and extends battery life.

A disable mode puts the chip into a low current drain mode. With a 3.0V supply, quiescent current drops to 200nA maximum, 50nA typical.

Key Features
- 120V peak-to-peak typical AC output voltage
- Low input current (w/inductor current)......12mA
- Low disabled input current......50nA
- Wide operating voltage range - from 2.0V to 6.5V
- Simple design requires few passive components
- Adjustable output lamp frequency controls lamp color and power consumption
- Adjustable converter frequency for minimum power consumption
- IMP803 pin compatible
- MicroSO package option

IMP803: High-Voltage EL Lamp Driver

The IMP803 drives EL lamps of up to 30nF capacitance to high brightness. EL lamps with capacitance greater than 30nF can be driven but will be less bright. The typical regulated output voltage that is applied to the EL lamp is 180V peak-to-peak.

The IMP803 operates over a 2.0V to 6.5V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP803. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications. An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 180V peak-to-peak. This conserves power and extends battery life.

Key Features
- Low Power: 420µA typical VDD current
- Wide operating voltage range - from 2.0V to 6.5V
- 180V peak-to-peak typical AC output voltage
- Large output load capability - drive lamps with more than 30nF capacitance
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- Device can be Enabled/Disabled
- Low quiescent current - 20nA (disabled)
- High-Voltage CMOS Process
- MicroSO package option

EL Lamp Driver Product Summary Table

<table>
<thead>
<tr>
<th>Part</th>
<th>Input Voltage Range (V)</th>
<th>Typical Output Voltage (Vpp)</th>
<th>Regulated Output Voltage</th>
<th>Adjustable Lamp Drive and Boost Frequency</th>
<th>Low Power Disable Mode</th>
<th>Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP522</td>
<td>2.0 to 6.5</td>
<td>220 (Dual Outputs)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>10-pin, MicroSO</td>
</tr>
<tr>
<td>IMP525</td>
<td>0.9 to 2.5</td>
<td>112</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8-pin, MicroSO & SO</td>
</tr>
<tr>
<td>IMP527</td>
<td>0.9 to 2.5</td>
<td>180</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8-pin, MicroSO & SO</td>
</tr>
<tr>
<td>IMP528</td>
<td>2.0 to 6.5</td>
<td>220</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8-pin, MicroSO & SO</td>
</tr>
<tr>
<td>IMP560</td>
<td>2.0 to 6.5</td>
<td>120</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8-pin, MicroSO & SO</td>
</tr>
<tr>
<td>IMP803</td>
<td>2.0 to 6.5</td>
<td>180</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8-pin, MicroSO & SO</td>
</tr>
</tbody>
</table>

Die are also available.
EL Lamp Driver Development Kits

Several demonstration boards and evaluation kits are available to reduce time-to-market. The kits are available by calling IMP Customer Service at 408.432.9100.

<table>
<thead>
<tr>
<th>Item</th>
<th>Device/Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP803EV1</td>
<td>IMP803LG</td>
<td>Evaluation board.</td>
</tr>
<tr>
<td>IMPxxxDBM</td>
<td>Any MicroSO</td>
<td>Development board. For evaluating IC sample(s) in-circuit.</td>
</tr>
<tr>
<td>IMPxxxDBS</td>
<td>Any SO</td>
<td>Development board. For evaluating IC sample(s) in-circuit.</td>
</tr>
</tbody>
</table>

Note: “xxx” denotes any driver; 525, 527, 528, 560 or 803.

Electroluminescent Lamp Applications and Benefits

Liquid Crystal Displays (LCDs) must be lighted for viewing in darkness or low ambient light conditions. Typically, light is projected forward from the back of the LCD display. EL lamps are popular backlights for liquid crystal displays and keypads because EL lamps are flexible, lightweight, thin, vibration and impact resistant, and can be shaped into small, complex or irregular forms. EL lamps evenly light an area without creating “bright-spots”.

Since EL lamps typically consume much less current than incandescent bulbs or light emitting diodes (LEDs), their low power consumption, low heat generation and flexibility make them ideal for battery powered portable applications.

EL lamp backlighting applications include: keyless entry systems; audio/video equipment remote controllers; PDA keyboards and displays; timepieces and watches; LCD displays in cellular phones, pagers, and handheld Global Positioning Systems (GPS); face illumination for instrumentation; assistance lighting for buildings; and decorative lighting for sign-displays and merchandising displays.

Typical EL Lamp Applications

- PDAs
- Safety illumination
- Portable instrumentation
- Battery-operated displays
- LCD modules
- Toys
- Automotive displays
- Cellular phones
- Night lights
- Audio and TV remote control units
- Panel meters
- Pagers
- Clocks and radios
- Portable GPS receivers
- Handheld computers
- Caller ID

EL Driver Product Updates

New product information and application notes can be obtained by visiting the IMP web site at www.impweb.com or by sending email to info@impinc.com.
Dual EL Lamp Driver

The IMP522 is a dual-output, high-voltage electroluminescent (EL) lamp driver. Either or both EL lamp driver outputs can be turned ON with the LMPSEL select pin. One EL lamp is connected between \(V_A \) and \(V_{AB} \) and the other is connected between \(V_B \) and \(V_{AB} \). \(V_{AB} \) is a common pin for both lamps. With an input supply voltage between 2.0V and 6.5V, the typical regulated lamp drive voltage is 220V peak-to-peak.

The device uses a single inductor and a minimum number of passive components: a storage capacitor, a fast recovery diode and two resistors to set the PWM and EL drive frequencies. These can be independently set to optimize brightness and minimize power consumption. \(R_{SW} \) is connected between the \(R_{SW-OSC} \) pin and the supply pin \(V_{DD} \) to set the frequency for the internal 3.0\(\Omega \) switching MOSFET. The switch duty cycle is 88%. The EL lamp driver frequency is set by \(R_{EL-OSC} \) connected between the \(R_{EL-OSC} \) pin and the \(V_{DD} \) pin.

Designed to minimize battery current drain, the IMP522 draws 2mA maximum. A power-saving shutdown mode reduces current to 2µA maximum.

The IMP522 is available in a compact 10-pin MicroSO package and in die form.

Key Features

- Drive two EL lamps independently
- Digital LMPSEL pin
 - Activate either or both EL output drivers
- 220V\textsubscript{P-P} typical AC output voltage drives 30nF EL lamps
- Wide operating voltage range: 2V to 6.5V
- Low current consumption: 2mA maximum
- Disable mode extends battery life
 - Disable current 2µA maximum
- Compact 10-pin MicroSO package
- High-voltage, low-cost CMOS process

Applications

- Cellular phones
- PDAs/Handheld computers
- Toys/Consumer electronics
- Safety Illumination
- LCD modules
- Remote controls

Block Diagram

![Diagram of the IMP522 block diagram showing connections for L\textsubscript{x} (4), C\textsubscript{S} (3), V\textsubscript{A} (8), V\textsubscript{AB} (7), V\textsubscript{B} (5), and V\textsubscript{DD} connections.](image)
Pin Configuration

![Pin Diagram](image)

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input Voltage</th>
<th>Temperature Range</th>
<th>Pins-Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP522EMB</td>
<td>2.0V to 6.5V</td>
<td>–40°C to +85°C</td>
<td>10-MicroSO</td>
</tr>
</tbody>
</table>

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD, RSW-Osc and RELOSC</td>
<td></td>
<td>–0.5V to +7.0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Csl, LS</td>
<td></td>
<td>–0.5V to +120V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td></td>
<td>–40°C to +85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td>–65°C to +150°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation (MicroSO)</td>
<td></td>
<td>500mW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA, VB, VAB</td>
<td></td>
<td>–0.5V to VCS (pin 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, VDD = 3.0V, RSW = 910kΩ, REL = 2.7MΩ, L = 220µH and TA = 25°C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-resistance of MOS Switch</td>
<td>RDS(ON)</td>
<td>I = 100mA</td>
<td>3.5</td>
<td>8</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td>VCSREG</td>
<td></td>
<td>110</td>
<td>120</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Peak-to-Peak (in regulation)</td>
<td>VAV = VAB, VB - VAB</td>
<td>VDD = 2.0 to 6.5V</td>
<td>220</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Drive Frequency (either output)</td>
<td>fEL</td>
<td>See Figure 1</td>
<td>2</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>fSW</td>
<td>See Figure 1</td>
<td>61</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching Duty Cycle</td>
<td>DSW</td>
<td>See Figure 1</td>
<td>88</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Input Current:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IcD Without Inductor Current</td>
<td>IcD</td>
<td>See Figure 1</td>
<td>1.0</td>
<td>2.0</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IcD Plus Inductor Current (1 Load)</td>
<td>IcD</td>
<td>See Figure 1</td>
<td>21</td>
<td>31</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IcD Plus Inductor Current (2 Load)</td>
<td>IcD</td>
<td>See Figure 1</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{DD}</td>
<td>Positive voltage supply. Inductor L may be connected here or to a separate unregulated supply.</td>
</tr>
<tr>
<td>2</td>
<td>R_{SW-OSC}</td>
<td>Switch-mode resistor pin. The external resistor R_{SW} determines switching frequency.</td>
</tr>
<tr>
<td>3</td>
<td>C_S</td>
<td>Boost converter storage capacitor. The voltage across the EL lamp is approximately equal to twice the voltage at C_S.</td>
</tr>
<tr>
<td>4</td>
<td>L_X</td>
<td>Connection to flyback inductor L.</td>
</tr>
<tr>
<td>5</td>
<td>V_B</td>
<td>Output for EL Lamp B.</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>7</td>
<td>V_{AB}</td>
<td>Common terminal for both EL lamps.</td>
</tr>
<tr>
<td>8</td>
<td>V_A</td>
<td>Output for EL Lamp A.</td>
</tr>
<tr>
<td>9</td>
<td>LMPSEL</td>
<td>Digital three-state input pin. Select either lamp A or lamp B or both lamps.</td>
</tr>
<tr>
<td>10</td>
<td>R_{EL-OSC}</td>
<td>The EL lamp oscillator frequency setting pin. External resistor R_{EL} connected to V_{DD} sets the EL Lamp drive frequency for both lamps.</td>
</tr>
</tbody>
</table>

Application Information

ON = V_{DD}
OFF = 0V

V_{DD} = 400V

Enable/Disable Strobe

R_{SW} = 910kΩ
$L = 220\mu H$

R_{EL} = 2.7MΩ

$10\mu F$

$0.1\mu F$

Figure 1. Test Circuit
Application Information

EL Lamp Drive
The outputs $V_A - V_{AB}$ and $V_B - V_{AB}$ are configured as H-bridges, driven by the EL oscillator. Each output is switched between C_S and ground on alternate phases, creating peak-to-peak signals across the EL lamps of twice the regulated voltage.

EL Lamp Selection: LMPSEL
The digital input pin LMPSEL allows either or both EL lamps to be active. Lamp A is active when LMPSEL is LOW and lamp B is active when LMPSEL is HIGH. When LMPSEL is left floating or driven by a three-state driver in the high impedance state, both lamp driver outputs are active.

<table>
<thead>
<tr>
<th>LMPSEL Signal</th>
<th>Lamp A Drive V_A and V_{AB}</th>
<th>Lamp B Drive V_B and V_{AB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LOW</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>Floating/</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>High Impedance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The logic HIGH signal level is defined as greater than $0.7V_{DD}$ and logic LOW is defined as less than $0.3V_{DD}$. A floating level is recognized with the signal level between $0.3V_{DD}$ and $0.7V_{DD}$, or when the output impedance of the driving voltage signal source is infinite (driver in OFF state).

Both drivers are OFF if the IMP522 is disabled.

EL Driver Output Overvoltage Regulator
The IMP522 maximum V_{CS} output voltage is between 110V and 120V. The internal overvoltage regulator skips the inductor switching whenever the voltage on the C_S pin exceeds the regulation threshold. The internal overvoltage detection trip point has a hysteresis of 1V and a range of 110V to 120V at room temperature.

PWM Circuit Switching
The switching MOSFET is driven by the PWM signal (nominally 61kHz). During the first 88% of the period, the switch is ON, providing a low impedance path (<8Ω) from L_X to ground. This causes the external inductor to charge. In the last 12% of the period, the MOSFET is turned OFF. This causes the voltage on the output of L_X to rise up to a high value. At some point, this will forward-bias the external diode, thus pumping charge into the storage capacitor C_S. The voltage on C_S increases each cycle to between 110V and 120V. When the internal regulation trip-point is reached, the overvoltage regulator turns the MOSFET switch OFF to conserve power.
Power Sequencing

To power up the chip, the R_{SW-OSC} pin is connected to V_{DD} through the external R_{SW} resistor. The voltage on the pin will charge up to $V_{DD}/2$. An internal threshold detector circuit monitors the pin voltage and when it exceeds the threshold range (0.2V to 0.9V) it powers up the oscillator and internal bias modules. This starts a delay counter which is one half of the EL oscillator period, after which power to the high voltage internal modules is applied. The IMP522 is then operating fully.

To power down the chip, R_{SW} is driven to ground via a switch or logic gate. When the voltage on the driver side of the resistor falls below $V_{DD}/2$, there will be no input bias current into the R_{SW-OSC} pin. This immediately powers down the internal high-voltage circuits, which effectively shuts the lamp off. At this point the oscillator and bias modules still draw quiescent current, but oscillations have ceased. As the R_{SW-OSC} pin voltage falls below 0.1, the oscillator and bias modules are also fully powered down.

Power Saving Disable Mode

The IMP522 can be powered up and down with R_{SW-OSC}. In normal operation, this resistor on the R_{SW-OSC} pin is connected to V_{DD} or another voltage source. To power down (disable) the IMP522, R_{SW} is connected to ground.

When disabled, the IMP522 quiescent current drops to typically 20nA.

In die form, an extra pin ENABLE is available (contact factory). Connecting this pad to V_{DD} disables the chip. The ENABLE signal can be driven by a microcontroller.

Oscillator Frequency Adjustment

The EL lamp drive and PWM boost converter oscillation frequencies can be programmed independently.

The R_{SW} resistor, connected between the R_{SW-OSC} pin and V_{DD}, determines the Inductor Switching (or PWM-) frequency. For the recommended nominal resistor value of 910kΩ, the frequency is 61kHz. For other resistor values, the frequency is inversely proportional to the resistor value. Increasing the resistance will lower the frequency.

The R_{EL} resistor, connected between the R_{EL-OSC} pin and V_{DD}, determines the EL lamp drive frequency. For the recommended nominal resistor value of 2.7MΩ, the frequency is 250Hz. For other resistor values, the frequency is inversely proportional to the resistor value: increasing the resistance will lower the frequency.

<table>
<thead>
<tr>
<th>Oscillator</th>
<th>Nominal Resistor</th>
<th>Nominal Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL Lamp Drive</td>
<td>$R_{EL} = 2.7M\Omega$</td>
<td>250Hz</td>
</tr>
<tr>
<td>Inductor Switch (PWM)</td>
<td>$R_{SW} = 910k\Omega$</td>
<td>61kHz</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
The IMP525 is an Electroluminescent (EL) lamp driver designed for systems that must operate down to 1 volt and below. The input supply voltage range is 0.9V to 2.5V. Typical output lamp drive voltage is 112V. All four EL lamp-driving functions are on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6nF capacitance can be driven to high brightness.

The circuit requires few external components; one inductor, one diode, one capacitor and two resistors. The resistors set the frequency for the two oscillators.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to 1µA typical with a VDD of 1.5V. The chip can be disabled by connecting RSW, the oscillator frequency setting resistor, to ground. A disable pad (active low), accessible only on the die, can also be used to disable the driver.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 112V peak-to-peak. This conserves power and extends battery life.

The IMP525 is available in MicroSO and SO-8 packages and in die form.
Parameter	**Symbol**	**Conditions**	**Min**	**Typ**	**Max**	**Units**
ON-resistance of MOS Switch | $R_{DS(on)}$ | $I = 50mA$ | 0.9 | 15 | Ω
Operating Voltage | V_{CS} | $V_{DD} = 1.5V$, See Figure 1, Table 1 | 52 | 58 | 65 | V
Output Voltage at C_S | V_{CS} | $V_{DD} = 0.9V$, See Figure 1, Table 2 | 50 | | | V
Output Voltage Peak-to-Peak | V_A-V_B | $V_{DD} = 1.5V$, See Figure 1 | 104 | 112 | 124 | V
Peak-to-Peak
Quiescent V_{DD} Supply Current, Disabled (Disable pin available on die only) | I_{QDIS} | Disable = HIGH | 70 | | | nA
Quiescent V_{DD} Supply Current, Disabled | I_{QDIS} | $R_{SW-OSC} = GND$ | 1.0 | 2.0 | μA
Input Current at V_{DD} Pin | I_{DD} | $V_{DD} = 0.9V$ to 1.5V | 23 | 32 | mA
Input Current: I_{DD} Plus Inductor Current | I_{IN} | $V_{DD} = 1.5V$ | 1.5 | | | mA
V_{A-B} Output Drive Frequency | f_{EL} | $V_{DD} = 1.5V$, See Figure 1, Table 1 | 500 | | | Hz
Boost Converter Switching Frequency | f_{SW} | $V_{DD} = 1.5V$, See Figure 1, Table 1 | 26 | | | kHz
Switching Duty Cycle | D_{SW} | $V_{DD} = 1.5V$, See Figure 1 | 87.5 | | | %
Disable Input LOW Voltage (Disable pin available on die only) | V_{DISL} | GND | 0.2 | | | V
Disable Input HIGH Voltage (Disable pin available on die only) | V_{DISH} | $V_{DD}-0.5V$ | | | | V

*Disable pad not active
**Disable pad active

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.
Typical Characteristics

EL Lamp Drive Frequency

![Graph showing EL Lamp Drive Frequency](525_08.eps)

- **VDD = 1.5V**
- **TA = 25°C**

Boost Converter Switching Frequency

![Graph showing Boost Converter Switching Frequency](525_10.eps)

- **VDD = 1.5V**
- **TA = 25°C**

EL Lamp Drive Period

![Graph showing EL Lamp Drive Period](525_07.eps)

- **VDD = 1.5V**
- **TA = 25°C**

Boost Converter Switching Period

![Graph showing Boost Converter Switching Period](525_09.eps)

- **VDD = 1.5V**
- **TA = 25°C**
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V<sub>DD</sub></td>
<td>Positive voltage supply for the IMP525. Inductor L may be connected here or to a separate supply.</td>
</tr>
<tr>
<td>2</td>
<td>R<sub>SW-OSC</sub></td>
<td>Switch-mode resistor pin. Switching frequency is determined by external resistor R<sub>SW</sub>, connected between pin 2 and V<sub>DD</sub>.</td>
</tr>
<tr>
<td>3</td>
<td>C<sub>S</sub></td>
<td>Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at C<sub>S</sub>.</td>
</tr>
<tr>
<td>4</td>
<td>L<sub>X</sub></td>
<td>Connection to flyback inductance, L.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pin.</td>
</tr>
<tr>
<td>6</td>
<td>V<sub>B</sub></td>
<td>EL lamp drive. The lamp is connected to a high-voltage bridge circuit with V<sub>B</sub> providing the complementary connection to V<sub>A</sub>.</td>
</tr>
<tr>
<td>7</td>
<td>V<sub>A</sub></td>
<td>EL lamp drive. (See above)</td>
</tr>
<tr>
<td>8</td>
<td>R<sub>EL-OSC</sub></td>
<td>The EL lamp oscillator frequency-setting pin. The frequency is controlled by resistor R<sub>EL</sub>, connected from pin 8 to V<sub>DD</sub>.</td>
</tr>
<tr>
<td></td>
<td>DIS</td>
<td>Available only in die form. Setting DIS HIGH disables the chip.</td>
</tr>
</tbody>
</table>

External Pad

DIS Available only in die form. Setting DIS HIGH disables the chip.

External Component Components

<table>
<thead>
<tr>
<th>External Component</th>
<th>Description and Selection Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>A fast reverse recovery diode, with BV > 100, such as a 1N4148.</td>
</tr>
<tr>
<td>Capacitor C<sub>S</sub></td>
<td>The high voltage capacitor that stores the inductive energy transferred through the catch diode. A 100 volt capacitor between 10nF and 100nF is recommended.</td>
</tr>
<tr>
<td>Resistor R<sub>EL</sub></td>
<td>The EL lamp oscillator frequency-setting resistor. R<sub>EL</sub> is connected between pin 8 and V<sub>DD</sub>, providing a frequency inversely proportional to R<sub>EL</sub>; as R<sub>EL</sub> increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 1MΩ resistor between the R<sub>EL-OSC</sub> pin and the V<sub>DD</sub> supply results in a lamp frequency around 500Hz.</td>
</tr>
<tr>
<td>Resistor R<sub>SW</sub></td>
<td>Switching Oscillator frequency-setting resistor. R<sub>SW</sub> is connected between the R<sub>SW-OSC</sub> pin and the V<sub>DD</sub> supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.</td>
</tr>
<tr>
<td>Capacitor C<sub>SW</sub></td>
<td>This is an optional noise-suppression capacitor connected from ground to the R<sub>SW-OSC</sub> pin. A 100pF capacitor is recommended.</td>
</tr>
<tr>
<td>Inductor L</td>
<td>The inductor provides the voltage boost needed by means of inductive “flyback”. The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the L<sub>X</sub> pin. When the switch opens, the inductor potential will forward-bias the diode and the current will pass through to the storage capacitor C<sub>S</sub>, charging it to a high voltage. As the value of the inductor is increased, the switching frequency set by R<sub>SW</sub> should also be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger-area EL lamps must be driven. A small electrolytic capacitor (10µF, 16V), normally present across the inductor supply V<sub>IN</sub>, will likely eliminate the need for C<sub>SW</sub>.</td>
</tr>
</tbody>
</table>
Test Circuit

Figure 1 shows the IMP525 configured to drive an EL lamp, represented as a 3nF capacitor.

Figure 1. Test Circuit

Table 1. $V_{IN} = 1.5V$

<table>
<thead>
<tr>
<th>Component</th>
<th>Connections</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{SW}</td>
<td>V_{DD}, R_{SW-OSC}</td>
<td>1MΩ</td>
<td>Boost converter oscillator bias resistor</td>
</tr>
<tr>
<td>R_{EL}</td>
<td>V_{DD}, R_{EL-OSC}</td>
<td>1Ω</td>
<td>EL lamp driver oscillator bias resistor</td>
</tr>
<tr>
<td>L</td>
<td>V_{DD}, L_{X}</td>
<td>330μH</td>
<td>Boost converter inductor</td>
</tr>
<tr>
<td>C_{S}</td>
<td>C_{S}, GND</td>
<td>0.1μF/100V</td>
<td>Boost converter storage capacitor</td>
</tr>
<tr>
<td>D</td>
<td>L_{X}, C_{S}</td>
<td>1N4148</td>
<td>Switching diode</td>
</tr>
<tr>
<td>C_{SW}</td>
<td>R_{SW-OSC}, GND</td>
<td>0.1nF</td>
<td>Noise-suppression capacitor</td>
</tr>
</tbody>
</table>

Notes. 1. Larger values may be required depending upon supply impedance. 2. Murata LQH4N331K04 (8.2Ω max. DCR)

Table 2. $V_{IN} = 0.9V$

<table>
<thead>
<tr>
<th>Component</th>
<th>Connections</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{SW}</td>
<td>V_{DD}, R_{SW-OSC}</td>
<td>1.0Ω</td>
<td>Boost converter oscillator bias resistor</td>
</tr>
<tr>
<td>R_{EL}</td>
<td>V_{DD}, R_{EL-OSC}</td>
<td>2.62Ω</td>
<td>EL lamp driver oscillator bias resistor</td>
</tr>
<tr>
<td>L</td>
<td>V_{DD}, L_{X}</td>
<td>680μH</td>
<td>Boost converter inductor</td>
</tr>
<tr>
<td>C_{S}</td>
<td>C_{S}, GND</td>
<td>0.1μF/100V</td>
<td>Boost converter storage capacitor</td>
</tr>
<tr>
<td>D</td>
<td>L_{X}, C_{S}</td>
<td>1N4148</td>
<td>Switching diode</td>
</tr>
<tr>
<td>C_{SW}</td>
<td>R_{SW-OSC}, GND</td>
<td>0.1nF</td>
<td>Noise-suppression capacitor</td>
</tr>
</tbody>
</table>

Notes. 3. Coilcraft DS1608C-684 (2.2Ω max. DCR)
Enable/Disable Operation

Figure 2 shows how the IMP525 can be enabled via a logic gate that connects \(R_{SW} \) to \(V_{DD} \), and disabled by connecting it to ground.

The IMP525 can also be disabled using a pad on the die. The Disable function pin is not available in packaged parts.

<table>
<thead>
<tr>
<th>Enable/Disable Table</th>
<th>IMP525 State</th>
<th>Disable PAD Connection (Available only with dice)</th>
<th>IMP525 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{SW}) Connection</td>
<td>(V_{DD}) Enabled</td>
<td>(\text{HIGH (V}_{DD}) Disabled</td>
<td>(\text{LOW (Ground) Enabled}</td>
</tr>
<tr>
<td>Ground</td>
<td>Disabled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Note:
1. Murata part # LQH4N331K04 (DC resistance < 8.2 \(\Omega \))
2. Larger values may be required depending upon supply impedance.
* Optional |

High Voltages Present

The IMP525 generates high voltages and caution should be exercised.

Inductor Manufacturers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Series</th>
<th>USA Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toko</td>
<td>D52FU</td>
<td>(847) 297-0070</td>
</tr>
<tr>
<td>Coilcraft</td>
<td>DS1608, DO1608, DT1608</td>
<td>(847) 639-6400</td>
</tr>
<tr>
<td>River Electronics</td>
<td>FLC32</td>
<td>(310) 320-7488</td>
</tr>
<tr>
<td>Murata</td>
<td>LQH4N</td>
<td>(800) 831-9172</td>
</tr>
</tbody>
</table>
Single Cell Battery Powered Electroluminescent Lamp Driver/Inverter

The IMP527 is an Electroluminescent (EL) lamp driver designed for systems that must operate down to 1 volt and below. The input supply voltage range is 0.9V to 2.5V. Typical output lamp drive voltage is 180V. All four EL lamp-driving functions are on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6nF capacitance can be driven to high brightness.

The circuit requires few external components; one inductor, one diode, one capacitor and two resistors. The resistors set the frequency for the two oscillators.

A disable mode puts the chip into a low current-drain state. When disabled, quiescent current drops to 1µA typical with a VDD of 1.5V. The chip can be disabled by connecting RSW, the oscillator frequency setting resistor, to ground. A disable pad (active low), accessible only on the die, can also be used to disable the driver.

An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 180V peak-to-peak. This conserves power and extends battery life.

The IMP527 is available in MicroSO and SO-8 packages and in die form.
Pin Configuration

![Pin Configuration Diagram](image)

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input Voltage</th>
<th>Regulated Output Voltage</th>
<th>Temperature Range</th>
<th>Pins-Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP527EMA</td>
<td>0.9V to 2.5V</td>
<td>YES</td>
<td>−40°C to +85°C</td>
<td>8-MicroSO</td>
</tr>
<tr>
<td>IMP527ESA</td>
<td>0.9V to 2.5V</td>
<td>YES</td>
<td>−40°C to +85°C</td>
<td>8-SO</td>
</tr>
<tr>
<td>IMP527/D*</td>
<td>0.9V to 2.5V</td>
<td>YES</td>
<td>25°C</td>
<td>Dice</td>
</tr>
<tr>
<td>IMP527/D1**</td>
<td>0.9V to 2.5V</td>
<td>YES</td>
<td>25°C</td>
<td>Dice</td>
</tr>
</tbody>
</table>

* Disable pad not active
** Disable pad active

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, $V_{DD} = 1.5V$, $R_{SW} = 1M\Omega$, $R_{REL} = 1M\Omega$, and $T_A = 25°C$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-resistance of MOS Switch</td>
<td>$R_{DS(ON)}$</td>
<td>$I = 50mA$</td>
<td>15</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage at C_S</td>
<td>V_{CS}</td>
<td>$V_{DD} = 1.5V$, See Figure 1, Table 1</td>
<td>80</td>
<td>90</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage at C_S</td>
<td>V_{CS}</td>
<td>$V_{DD} = 0.9V$, See Figure 1, Table 2</td>
<td>50</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Peak-to-Peak</td>
<td>V_{A-V_B}</td>
<td>$V_{DD} = 1.5V$, See Figure 1</td>
<td>180</td>
<td></td>
<td></td>
<td>V_{P-P}</td>
</tr>
<tr>
<td>Quiescent V_{DD} Supply Current, Disabled</td>
<td>I_{QDIS}</td>
<td>Disable = HIGH</td>
<td>70</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>(Disable pin available on die only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent V_{DD} Supply Current, Disabled</td>
<td>I_{QDIS}</td>
<td>$R_{SW-OSC} = GND$, $V_{DD} = 1.5V$</td>
<td>1.0</td>
<td>2.0</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Input Current at V_{DD} Pin</td>
<td>I_{ID}</td>
<td>$V_{DD} = 0.9V$ to $1.5V$</td>
<td>1.5</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Input Current: I_{ID} Plus Inductor Current</td>
<td>I_{IN}</td>
<td>$V_{DD} = 1.5V$, See Figure 1, Table 1</td>
<td>26</td>
<td>32</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>V_{A-B} Output Drive Frequency</td>
<td>f_{EL}</td>
<td>$V_{DD} = 1.5V$, See Figure 1, Table 1</td>
<td>500</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Boost Converter Switching Frequency</td>
<td>f_{SW}</td>
<td>$V_{DD} = 1.5V$, See Figure 1, Table 1</td>
<td>26</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Switching Duty Cycle</td>
<td>D_{SW}</td>
<td>$V_{DD} = 1.5V$, See Figure 1</td>
<td>87.5</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Disable Input LOW Voltage (Disable pin available on die only)</td>
<td>V_{DISL}</td>
<td>GND</td>
<td>0.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Disable Input HIGH Voltage (Disable pin available on die only)</td>
<td>V_{DIH}</td>
<td>$V_{DD}-0.5V$</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>
Typical Characteristics

EL Lamp Drive Frequency

![Graph showing EL Lamp Drive Frequency]

- VDD = 1.5V
- TA = 25°C

Boost Converter
Switching Frequency

![Graph showing Boost Converter Switching Frequency]

- VDD = 1.5V
- TA = 25°C

EL Lamp Drive Period

![Graph showing EL Lamp Drive Period]

- VDD = 1.5V
- TA = 25°C

Boost Converter
Switching Period

![Graph showing Boost Converter Switching Period]

- VDD = 1.5V
- TA = 25°C
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Positive voltage supply for the IMP527. Inductor L may be connected here or to a separate supply.</td>
</tr>
<tr>
<td>2</td>
<td>RSW-OSC</td>
<td>Switch-mode resistor pin. Switching frequency is determined by external resistor RSW, connected between pin 2 and VDD.</td>
</tr>
<tr>
<td>3</td>
<td>CS</td>
<td>Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at CS.</td>
</tr>
<tr>
<td>4</td>
<td>LX</td>
<td>Connection to flyback inductance, L.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pin.</td>
</tr>
<tr>
<td>6</td>
<td>VB</td>
<td>EL lamp drive. The lamp is connected to a high-voltage bridge circuit with VB providing the complementary connection to VA.</td>
</tr>
<tr>
<td>7</td>
<td>VA</td>
<td>EL lamp drive. (See above)</td>
</tr>
<tr>
<td>8</td>
<td>REL-OSC</td>
<td>The EL lamp oscillator frequency-setting pin. The frequency is controlled by resistor REL, connected from pin 8 to VDD.</td>
</tr>
</tbody>
</table>

Disable Pad DIS | Available only in die form. Setting DIS HIGH disables the chip. |

External Components

<table>
<thead>
<tr>
<th>External Component</th>
<th>Description and Selection Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>A fast reverse recovery diode, with BV > 100, such as a 1N4148.</td>
</tr>
<tr>
<td>Capacitor CS</td>
<td>The high voltage capacitor that stores the inductive energy transferred through the catch diode. A 100 volt capacitor between 10nF and 100nF is recommended.</td>
</tr>
<tr>
<td>Resistor REL</td>
<td>The EL lamp oscillator frequency-setting resistor. REL is connected between pin 8 and VDD, providing a frequency inversely proportional to REL; as REL increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 1MΩ resistor between the REL-OSC pin and the VDD supply results in a lamp frequency around 500Hz.</td>
</tr>
<tr>
<td>Resistor RSW</td>
<td>Switching Oscillator frequency-setting resistor. RSW is connected between the RSW-OSC pin and the VDD supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.</td>
</tr>
<tr>
<td>Capacitor CSW</td>
<td>This is an optional noise-suppression capacitor connected from ground to the RSW-OSC pin. A 100pF capacitor is recommended.</td>
</tr>
<tr>
<td>Inductor L</td>
<td>The inductor provides the voltage boost needed by means of inductive “flyback”. The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the LX pin. When the switch opens, the inductor potential will forward-bias the diode and the current will pass through to the storage capacitor CS, charging it to a high voltage. As the value of the inductor is increased, the switching frequency set by RSW should also be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger-area EL lamps must be driven. A small electrolytic capacitor (10µF, 16V), normally present across the inductor supply VIN, will likely eliminate the need for CSW.</td>
</tr>
</tbody>
</table>
Test Circuit

Figure 1 shows the IMP527 configured to drive an EL lamp, represented as a 3nF capacitor.

![Electroluminescent Lamp Driver Diagram](image)

Table 1. $V_{IN} = 1.5V$

<table>
<thead>
<tr>
<th>Component</th>
<th>Connections</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{SW}</td>
<td>V_{DD}, R_{SW-OSC}</td>
<td>1MΩ</td>
<td>Boost converter oscillator bias resistor</td>
</tr>
<tr>
<td>R_{EL}</td>
<td>V_{DD}, R_{EL-OSC}</td>
<td>1MΩ</td>
<td>EL lamp driver oscillator bias resistor</td>
</tr>
<tr>
<td>L</td>
<td>V_{DD}, L_x^2</td>
<td>330µH</td>
<td>Boost converter inductor</td>
</tr>
<tr>
<td>C_S</td>
<td>C_S, GND</td>
<td>0.1µF/100V</td>
<td>Boost converter storage capacitor</td>
</tr>
<tr>
<td>D</td>
<td>L_x, C_S</td>
<td>1N4148</td>
<td>Switching diode</td>
</tr>
<tr>
<td>C_{SW}</td>
<td>R_{SW-OSC}, GND</td>
<td>0.1nF</td>
<td>Noise-suppression capacitor (optional)</td>
</tr>
</tbody>
</table>

Notes: 1. Larger values may be required depending upon supply impedance. 2. Murata LQH4N331K04 (8.2Ω max. DCR)

Table 2. $V_{IN} = 0.9V$

<table>
<thead>
<tr>
<th>Component</th>
<th>Connections</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{SW}</td>
<td>V_{DD}, R_{SW-OSC}</td>
<td>1MΩ</td>
<td>Boost converter oscillator bias resistor</td>
</tr>
<tr>
<td>R_{EL}</td>
<td>V_{DD}, R_{EL-OSC}</td>
<td>2.62MΩ</td>
<td>EL lamp driver oscillator bias resistor</td>
</tr>
<tr>
<td>L</td>
<td>V_{DD}, L_x^3</td>
<td>680µH</td>
<td>Boost converter inductor</td>
</tr>
<tr>
<td>C_S</td>
<td>C_S, GND</td>
<td>0.1µF/100V</td>
<td>Boost converter storage capacitor</td>
</tr>
<tr>
<td>D</td>
<td>L_x, C_S</td>
<td>1N4148</td>
<td>Switching diode</td>
</tr>
<tr>
<td>C_{SW}</td>
<td>R_{SW-OSC}, GND</td>
<td>0.1nF</td>
<td>Noise-suppression capacitor (optional)</td>
</tr>
</tbody>
</table>

Notes: 3. Coilcraft DS1608C-684 (2.2Ω max. DCR)
Enable/Disable Operation

Figure 2 shows how the IMP527 can be enabled via a logic gate that connects RSW to VDD, and disabled by connecting it to ground. The IMP527 can also be disabled using a pad on the die. The Disable function pin is not available in packaged parts.

<table>
<thead>
<tr>
<th>RSW Connection</th>
<th>IMP527 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Enabled</td>
</tr>
<tr>
<td>Ground</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disable PAD Connection</th>
<th>IMP527 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Available only with dice)</td>
<td></td>
</tr>
<tr>
<td>HIGH (VDD)</td>
<td>Disabled</td>
</tr>
<tr>
<td>LOW (Ground)</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pad Connection</th>
<th>IMP527 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH (VDD)</td>
<td>Disabled</td>
</tr>
<tr>
<td>LOW (Ground)</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Note:
1. Murata part # LQH4N331K04 (DC resistance < 8.2 Ω)
2. Larger values may be required depending upon supply impedance.

* Optional

High Voltages Present

The IMP527 generates high voltages and caution should be exercised.

Inductor Manufacturers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Series</th>
<th>USA Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toko</td>
<td>D52FU</td>
<td>(847) 297-0070</td>
</tr>
<tr>
<td>Coilcraft</td>
<td>DS1608, DO1608, DT1608</td>
<td>(847) 639-6400</td>
</tr>
<tr>
<td>River Electronics</td>
<td>FLC32</td>
<td>(310) 320-7488</td>
</tr>
<tr>
<td>Murata</td>
<td>LQH4N</td>
<td>(800) 831-9172</td>
</tr>
</tbody>
</table>
High-Voltage EL Lamp Driver – 220 Vpp Drive

The IMP528 is an Electroluminescent (EL) lamp driver with the four EL lamp driving functions on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. The IMP528 drives EL lamps of up to 50nF capacitance to high brightness; EL lamps with capacitances greater than 50nF can be driven, but will be lower in light output. The typical regulated output voltage that is applied to the EL lamp is 220V peak-to-peak. The circuit requires few external components; a single inductor, single diode, two capacitors and two resistors. Two of these resistors set the frequency for two internal oscillators.

Unlike other EL lamp drivers, the IMP528 does not require an external protection resistor in series with the EL lamp.

The IMP528 operates over a 2.0V to 6.5V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP528. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications.

An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 220V peak-to-peak. This conserves power and extends battery life.

The IMP528 is available in MicroSO and SO-8 packages and in die or wafer form.

Key Features

- 220V peak-to-peak typical AC output voltage
- Low Power: 420µA typical VDD current
- Wide operating voltage range – from 2.0V to 6.5V
- Large output load capability - drives lamps with more than 50nF capacitance
- Eliminates external protection resistor in series with EL lamp
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- High-Voltage CMOS Process
- MicroSO package option

Applications

- GPS units/Pagers/Cellular phones
- PDAs/Handheld computers
- Safety illumination
- Portable instrumentation
- Battery-operated displays
- LCD modules
- Toys

Block Diagram
Pin Configuration

SO/ MicroSO

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input Voltage</th>
<th>Regulated Output Voltage</th>
<th>Temperature Range</th>
<th>Pins-Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP528ESA</td>
<td>2.0V to 6.5V</td>
<td>Yes</td>
<td>–40°C to +85°C</td>
<td>8-SO</td>
</tr>
<tr>
<td>IMP528EMA</td>
<td>2.0V to 6.5V</td>
<td>Yes</td>
<td>–40°C to +85°C</td>
<td>8-MicroSO</td>
</tr>
<tr>
<td>IMP528/D*</td>
<td>2.0V to 6.5V</td>
<td>Yes</td>
<td>25°C</td>
<td>Dice</td>
</tr>
<tr>
<td>IMP528/D1**</td>
<td>2.0V to 6.5V</td>
<td>Yes</td>
<td>25°C</td>
<td>Dice</td>
</tr>
</tbody>
</table>

* Disable pad not active
** Disable pad active

Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

- \(V_{DD} \): –0.5V to +7.0V
- \(V_{RSW-OSC} \) and \(V_{REL-OSC} \): –0.5V to \(V_{DD} +0.3V \)
- \(V_{CS} \), \(V_{LX} \): –0.5V to +120V
- Operating Temperature Range: –40°C to +85°C
- Storage Temperature Range: –65°C to +150°C
- Power Dissipation (SO): 400mW
- Power Dissipation (MicroSO): 300mW
- \(V_A \), \(V_B \): –0.5V to \(V_{CS} \) (pin 3)

Electrical Characteristics

Unless otherwise noted, \(V_{DD} = 3.0V \), \(R_{SW} = 910k\Omega \), \(R_{EL} = 2.7M\Omega \), and \(T_A = 25°C \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-resistance of MOS Switch</td>
<td>(R_{DS(ON)})</td>
<td>(I = 100mA)</td>
<td>3.0</td>
<td>8</td>
<td>2</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td>(V_{CS})</td>
<td>(V_{DD} = 2.0) to 6.5V</td>
<td>110</td>
<td></td>
<td></td>
<td>(V)</td>
</tr>
<tr>
<td>Output Voltage Peak-to-peak (in regulation)</td>
<td>(V_A - V_B)</td>
<td>(V_{DD} = 2.0) to 6.5V</td>
<td>220</td>
<td></td>
<td></td>
<td>(V)</td>
</tr>
<tr>
<td>Input Current at (V_{DD}) Pin</td>
<td>(I_{DD})</td>
<td>(V_{DD} = 3.0V), See Figure 1</td>
<td>420</td>
<td>700</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Input Current at (V_{DD}) Pin</td>
<td>(I_{DD})</td>
<td>(V_{DD} = 6.0V)</td>
<td>500</td>
<td>750</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Quiescent (V_{DD}) Supply Current, Disabled</td>
<td>(I_{DDQ})</td>
<td>(V_{RSW-OSC} <100mV)</td>
<td>20</td>
<td>200</td>
<td></td>
<td>(nA)</td>
</tr>
<tr>
<td>Input Current: (I_{DD}) Plus Inductor Current</td>
<td>(I_{IN})</td>
<td>(V_{DD} = 3.0V), See Figure 1</td>
<td>21</td>
<td>31</td>
<td></td>
<td>(mA)</td>
</tr>
<tr>
<td>(V_A), (V_B) Output Drive Frequency</td>
<td>(f_{EL})</td>
<td>(V_{DD} = 3.0V), See Figure 1</td>
<td>250</td>
<td></td>
<td></td>
<td>(Hz)</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>(f_{SW})</td>
<td>(V_{DD} = 3.0V), See Figure 1</td>
<td>61</td>
<td></td>
<td></td>
<td>(kHz)</td>
</tr>
<tr>
<td>Switching Duty Cycle</td>
<td>(D_{SW})</td>
<td>(V_{DD} = 3.0V), See Figure 1</td>
<td>88</td>
<td></td>
<td></td>
<td>(%)</td>
</tr>
</tbody>
</table>
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Positive voltage supply for the IMP528. Inductor L may be connected here or to a separate unregulated supply.</td>
</tr>
<tr>
<td>2</td>
<td>RSW-OSC</td>
<td>Switch-mode resistor pin. Switching frequency is determined by an external resistor, RSW.</td>
</tr>
<tr>
<td>3</td>
<td>Cs</td>
<td>Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at Cs.</td>
</tr>
<tr>
<td>4</td>
<td>LX</td>
<td>Connection to flyback inductance, L.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pin.</td>
</tr>
<tr>
<td>6</td>
<td>VB</td>
<td>EL lamp drive. The lamp is connected in a high-voltage bridge circuit with VB providing the complementary connection to VA. The peak-to-peak AC voltage across the EL lamp is thus two times VCS.</td>
</tr>
<tr>
<td>7</td>
<td>VA</td>
<td>EL lamp drive. (See above)</td>
</tr>
<tr>
<td>8</td>
<td>REL-OSC</td>
<td>The EL lamp oscillator frequency setting pin. The oscillator frequency is controlled by external resistor REL.</td>
</tr>
</tbody>
</table>

External Components

<table>
<thead>
<tr>
<th>External Component</th>
<th>Description and Selection Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>Catch diode. A fast reverse recovery diode, with BV > 150V, such as an FDLL400 (150V).</td>
</tr>
<tr>
<td>Capacitor Cs</td>
<td>This is the high voltage capacitor that stores the inductive energy transferred through the catch diode. A capacitor with WV > 120V between 10nF and 100nF is recommended.</td>
</tr>
<tr>
<td>Resistor REL</td>
<td>The EL lamp oscillator frequency setting resistor. This resistor, connected between the REL-OSC pin and VDD, provides an oscillator frequency inversely proportional to REL; as REL increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 2.7MΩ resistor between the REL-OSC pin and the VDD supply results in a lamp frequency around 250Hz.</td>
</tr>
<tr>
<td>Resistor RSW</td>
<td>Switching Oscillator frequency setting resistor. The switching oscillator resistor is connected between the RSW-OSC pin and the VDD supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.</td>
</tr>
<tr>
<td>Inductor L</td>
<td>The inductor provides the voltage boost needed by means of inductive “flyback”. The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the LX pin. When this internal switch opens, the inductor potential will forward-bias the catch diode and the current will pass through the storage capacitor Cs, charging it to a high voltage. Smaller inductors are preferred to prevent saturation. As the value of the inductor increases (and the series DC resistance of the inductor decreases), the switching frequency set by RSW should be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger area EL lamps must be driven.</td>
</tr>
</tbody>
</table>
Test and Application Circuit, 3.0V

Figure 1 shows the IMP528 configured to drive an EL lamp with a 3.0V input.

![Test and Application Circuit, 3.0V](image)

Note:
1. Murata part # LQH4N221K04 (DC resistance <5Ω)
2. Larger values may be required depending upon supply impedance.
3. EN is connected to VDD to enable and to GND to disable.

Figure 1. 3.0V Application

Dual Supply Operation with 1.5V Battery

The IMP528 can also be operate from a single battery cell when a regulated voltage higher than 2.0V is also available. This dual supply configuration, shown in *Figure 2*, uses the regulated voltage to operate the IMP528 while the energy for the high-voltage boost circuit comes from the battery.

![Dual Supply Operation with 1.5V Battery](image)

1. Larger values may be required depending upon supply impedance.
2. EN is connected to VDD to enable and to GND to disable.

Figure 2. Dual Supply Operation
High-Voltages Present

Switch Resistance
The IMP528 inductor switch resistance is typically below 3.5Ω, as shown in Figure 3.

The IMP528 generates high voltages and caution should be exercised.

Figure 3. Boost Switch ON-Resistance
Power Efficient
EL Lamp Driver

The IMP560 is an Electroluminescent (EL) lamp driver designed for systems with low EL lamp drive voltage requirements. It is ideal for low ambient light applications or where small lamps are used. With just one-half the inductor current of the IMP803, the IMP560 reduces system power consumption and extends battery life. Input supply voltage range is 2.0V to 6.5V and quiescent current is a low 420μA. Typical EL lamp drive voltage is ±56V.

All four EL lamp-driving functions are on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. EL lamps of up to 6nF capacitance can be driven to high brightness.

The circuit requires few external components; a single inductor, a single diode, two capacitors and three resistors. Two of these resistors set the frequencies for two internal oscillators. An internal circuit shuts down the switching regulator when the lamp drive voltage exceeds 120V peak-to-peak. This conserves power and extends battery life.

A disable mode puts the chip into a low current drain mode. With a 3.0V supply, quiescent current drops to 200nA maximum, 50nA typical. The chip is disabled by connecting the oscillator frequency setting resistor RSW to ground.

The IMP560 is available in MicroSO and SO-8 packages and in die or wafer form.

Block Diagram

Key Features
- 112V peak-to-peak typical AC output voltage
- Low input current (w/inductor current)......12mA
- Low disabled input current......50nA
- Wide operating voltage range - from 2.0V to 6.5V
- Simple design requires few passive components
- Adjustable output lamp frequency controls lamp color and power consumption
- Adjustable converter frequency for minimum power consumption
- IMP803 pin-compatible
- MicroSO package option

Applications
- Night lights
- Automotive displays
- Cellular phones
- Pagers
- Clocks and radios
- Portable GPS receivers
- LCD module backlights
Pin Configuration

```
<table>
<thead>
<tr>
<th>SO/MicroSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD</td>
</tr>
<tr>
<td>R_SW-OSC</td>
</tr>
<tr>
<td>C_S</td>
</tr>
<tr>
<td>L_X</td>
</tr>
</tbody>
</table>
```

Pin Compatible With IMP803

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input Voltage</th>
<th>Regulated Output Voltage</th>
<th>Temperature Range</th>
<th>Pins-Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP560EMA</td>
<td>2.0V to 6.5V</td>
<td>YES</td>
<td>–40°C to +85°C</td>
<td>8-MicroSO</td>
</tr>
<tr>
<td>IMP560ESA</td>
<td>2.0V to 6.5V</td>
<td>YES</td>
<td>–40°C to +85°C</td>
<td>8-SO</td>
</tr>
<tr>
<td>IMP560/D*</td>
<td>2.0V to 6.5V</td>
<td>YES</td>
<td>25°C</td>
<td>Dice</td>
</tr>
<tr>
<td>IMP560/D1**</td>
<td>2.0V to 6.5V</td>
<td>YES</td>
<td>25°C</td>
<td>Dice</td>
</tr>
</tbody>
</table>

* Disable pad not active
** Disable pad active

Absolute Maximum Ratings

Supply Voltage, \(V_{DD}, V_{SW-OSC} \) and \(V_{REL-OSC} \) … \(-0.5V \) to +7.0V
Output Voltage, \(V_{CS} \) … \(-0.5V \) to +120V
Operating Temperature Range … \(-40°C \) to +85°C
Storage Temperature Range … \(-65°C \) to +150°C
Power Dissipation (SO) … 400mW
Power Dissipation (MicroSO) … 300mW

Note: All voltages are referenced to GND.
These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, \(V_{DD} = 3.0V, R_{SW} = 750k\Omega, R_{EL} = 2.0M\Omega, \) and \(T_A = 25°C. \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-resistance of MOS Switch</td>
<td>(R_{DS(ON)})</td>
<td>(I = 100mA)</td>
<td>3.5</td>
<td>8</td>
<td>(\Omega)</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td>(V_{CS})</td>
<td>(V_{DD} = 2.0) to 6.5V</td>
<td>52</td>
<td>56</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Peak-to-peak (in regulation)</td>
<td>(V_A-V_B)</td>
<td>(V_{DD} = 2.0) to 6.5V</td>
<td>104</td>
<td>112</td>
<td>120</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent (V_{DD}) Supply Current, Disabled</td>
<td>(I_{DDIS})</td>
<td>(V_{RSW-OSC} < 100mV)</td>
<td>50</td>
<td>200</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Input Current at (V_{DD}) Pin</td>
<td>(I_{DD})</td>
<td>(V_{DD} = 3.0V,) See Figure 1</td>
<td>470</td>
<td>700</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>Input Current at (V_{DD}) Pin</td>
<td>(I_{DD})</td>
<td>(V_{DD} = 5.0V,) See Figure 2</td>
<td>500</td>
<td>750</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>Input Current: (I_{DD}) Plus Inductor Current</td>
<td>(I_{IN})</td>
<td>(V_{DD} = 3.0V,) See Figure 1</td>
<td>12</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(V_A-V_B) Output Drive Frequency</td>
<td>(f_{EL})</td>
<td>(V_{DD} = 3.0V,) See Figure 1</td>
<td>300</td>
<td>370</td>
<td>430</td>
<td>Hz</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>(f_{SW})</td>
<td>(V_{DD} = 3.0V,) See Figure 1</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>kHz</td>
</tr>
<tr>
<td>Switching Duty Cycle</td>
<td>(D_{SW})</td>
<td>(V_{DD} = 3.0V,) See Figure 1</td>
<td>88</td>
<td></td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Positive voltage supply for the IMP560. Inductor L may be connected here or to a separate unregulated supply.</td>
</tr>
<tr>
<td>2</td>
<td>RSW-OSC</td>
<td>Switch-mode resistor pin. Switching frequency is determined by an external resistor, RSW.</td>
</tr>
<tr>
<td>3</td>
<td>CS</td>
<td>Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at CS.</td>
</tr>
<tr>
<td>4</td>
<td>LX</td>
<td>Connection to flyback inductance, L.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pin.</td>
</tr>
<tr>
<td>6</td>
<td>VB</td>
<td>EL lamp drive. The lamp is connected in a high-voltage bridge circuit with VB providing the complementary connection to VA. The peak-to-peak AC voltage across the EL lamp is thus two times VCS.</td>
</tr>
<tr>
<td>7</td>
<td>VA</td>
<td>EL lamp drive. (See above)</td>
</tr>
<tr>
<td>8</td>
<td>REL-OSC</td>
<td>The EL lamp oscillator frequency setting pin. The oscillator frequency is controlled by external resistor REL.</td>
</tr>
</tbody>
</table>

External Components

<table>
<thead>
<tr>
<th>External Component</th>
<th>Description and Selection Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>A fast reverse recovery diode, with BV > 100, such as a 1N4148.</td>
</tr>
<tr>
<td>Capacitor CS</td>
<td>This is the high voltage capacitor that stores the inductive energy transferred through the diode. A 100 volt capacitor between 10nF and 100nF is recommended.</td>
</tr>
<tr>
<td>Resistor REL</td>
<td>The EL lamp oscillator frequency setting resistor. This resistor, connected between the REL-OSC pin and ground, provides an oscillator frequency inversely proportional to REL; as REL increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 2MΩ resistor between the REL-OSC pin and the VDD supply results in a lamp frequency around 350Hz: a 1MΩ resistor will give ≈700Hz.</td>
</tr>
<tr>
<td>Resistor RSW</td>
<td>Switching Oscillator frequency setting resistor. The switching oscillator resistor is connected between the RSW-OSC pin and the VDD supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.</td>
</tr>
<tr>
<td>Inductor L</td>
<td>The inductor provides the voltage boost needed by means of inductive “flyback”. The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the LX pin. When this internal switch opens, the inductor potential will forward-bias the diode and the current will pass through the storage capacitor CS, charging it to a high voltage. Smaller inductors are preferred to prevent saturation. As the value of the inductor increases (and the series DC resistance of the inductor decreases), the switching frequency set by RSW should be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger area EL lamps must be driven.</td>
</tr>
</tbody>
</table>

High-Voltages Present

The IMP560 generates high voltages and caution should be exercised.
Test and Application Circuit, 3.0V

Figure 1 shows the IMP560 configured to drive a 3-square-inch EL lamp, represented as a 10nF capacitor.

![Figure 1. 3.0V Application](image1)

Note:
1. Murata part # LQH4N561K04 (DC resistance <14.5Ω)
2. Larger values may be required depending upon supply impedance.

Test and Application Circuit, 5.0V

Figure 2 shows a 5.0V input application driving a 6-square-inch EL lamp.

![Figure 2. 5.0V Application](image2)

Note:
1. Murata part # LQH4N561K04 (DC resistance <14.5Ω)
2. Larger values may be required depending upon supply impedance.
Enable/Disable Operation

Figure 3 shows the IMP560 can be enabled via a logic gate that connects \(R_{SW} \) to \(V_{DD} \), and disabled by connecting it to ground. \(R_{EL} \) may be connected either to \(V_{DD} \) or to the gate.

<table>
<thead>
<tr>
<th>(R_{SW}) Connection</th>
<th>IMP560 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Enabled</td>
</tr>
<tr>
<td>Ground</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Figure 3. Enable/Disable Operation

Dual Supply Operation with 1.5V Battery

The IMP560 can also be operate from a single battery cell when a regulated voltage higher than 2.0V is also available. The dual supply configuration, shown in Figure 4, uses the regulated voltage to operate the IMP560 while the energy for the high-voltage boost circuit comes from the battery. The current to run the internal logic is typically 420\(\mu \)A.

The circuit of Figure 4 can also be used with batteries that exceed 6.0V as long as \(V_{DD} \) does not exceed 6.5V.

Figure 4. Dual Supply Operation with High Battery Voltages
High-Voltage EL Lamp Driver

The IMP803 is an Electroluminescent (EL) lamp driver with the four EL lamp driving functions on-chip. These are the switch-mode power supply, its high-frequency oscillator, the high-voltage H-bridge lamp driver and its low-frequency oscillator. The IMP803 drives EL lamps of up to 30nF capacitance to high brightness; EL lamps with capacitances greater than 30nF can be driven, but will be lower in light output. The typical regulated output voltage that is applied to the EL lamp is 180V peak-to-peak. The circuit requires few external components, a single inductor, single diode, two capacitors and three resistors. Two of these resistors set the frequency for two internal oscillators.

The IMP803 operates over a 2.0V to 6.5V supply voltage range. A regulated, low-power source can supply the low quiescent current of the IMP803. The inductor may be driven from an independent, unregulated supply voltage in dual supply applications.

An internal circuit shuts down the switching regulator when the lamp drive voltage reaches 180V peak-to-peak. This conserves power and extends battery life.

The IMP803 is available in MicroSO and SO-8 packages and in die or wafer form.

Key Features

- Low Power: 420µA typical VDD current
- Wide operating voltage range - from 2.0V to 6.5V
- 180V peak-to-peak typical AC output voltage
- Large output load capability - drive lamps with more than 30nF capacitance
- Adjustable output lamp frequency for control of lamp color, lamp life, and power consumption
- Adjustable converter frequency to minimize power consumption
- Device can be Enabled/Disabled
- Low quiescent current – 20nA (disabled)
- High-Voltage CMOS Process
- MicroSO package option

Applications

- GPS units/Pagers/Cellular phones
- PDAs/Handheld computers
- Safety illumination
- Portable instrumentation
- Battery-operated displays
- LCD modules
- Toys
Pin Configuration

SO/ MicroSO

VDD 1
RSW-OSC 2
CS 3
LX 4
IMP803 5
REL-OSC 6
VA 7
VB 8
GND 9

Pin Compatible With HV803 and IMP560

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Input Voltage</th>
<th>Regulated Output Voltage</th>
<th>Temperature Range</th>
<th>Pins-Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP803LG</td>
<td>2.0V to 6.5V</td>
<td>Yes</td>
<td>–40°C to +85°C</td>
<td>8-SO</td>
</tr>
<tr>
<td>IMP803IMA</td>
<td>2.0V to 6.5V</td>
<td>Yes</td>
<td>–40°C to +85°C</td>
<td>8-MicroSO</td>
</tr>
<tr>
<td>IMP803SX*</td>
<td>2.0V to 6.5V</td>
<td>Yes</td>
<td>25°C</td>
<td>Dice</td>
</tr>
<tr>
<td>IMP803/D1**</td>
<td>2.0V to 6.5V</td>
<td>Yes</td>
<td>25°C</td>
<td>Dice</td>
</tr>
</tbody>
</table>

* Disable pad not active
** Disable pad active
Add /T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

VDD, VRSW-OSC and VREL-OSC –0.5V to +7.0V
VCS, LX .. –0.5V to +120V
Operating Temperature Range –40°C to +85°C
Storage Temperature Range –65°C to +150°C
Power Dissipation (SO) 400mW
Power Dissipation (MicroSO) 300mW
VA, VB .. –0.5V to VCS (pin 3)

Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, VDD = 3.0V, RSW = 750kΩ, REL = 2.0MΩ, and TA = 25°C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON-resistance of MOS Switch</td>
<td>R_DS(ON)</td>
<td>I = 100mA</td>
<td>3.5</td>
<td>8</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td>V_CS</td>
<td>VDD = 2.0 to 6.5V</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage Peak-to-peak (in regulation)</td>
<td>VA-VB</td>
<td>VDD = 2.0 to 6.5V</td>
<td>160</td>
<td>180</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>Quiescent VDD Supply Current, Disabled</td>
<td>I_DDO</td>
<td>VRSW-OSC <100mV</td>
<td>20</td>
<td>200</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Input Current at VDD Pin</td>
<td>I_DD</td>
<td>VDD = 3.0V, See Figure 1</td>
<td>420</td>
<td>700</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Input Current at VDD Pin</td>
<td>I_DD</td>
<td>VDD = 5.0V, See Figure 2</td>
<td>500</td>
<td>750</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Input Current: I_DD Plus Inductor Current</td>
<td>I_IN</td>
<td>VDD = 3.0V, See Figure 1</td>
<td>20</td>
<td>31</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output Voltage at VCS</td>
<td>V_CS</td>
<td>VDD = 3.0V, See Figure 1</td>
<td>60</td>
<td>74</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>VA-VB Output Drive Frequency</td>
<td>f_EL</td>
<td>VDD = 3.0V, See Figure 1</td>
<td>300</td>
<td>370</td>
<td>430</td>
<td>Hz</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>f_SW</td>
<td>VDD = 3.0V, See Figure 1</td>
<td>30</td>
<td>70</td>
<td>90</td>
<td>kHz</td>
</tr>
<tr>
<td>Switching Duty Cycle</td>
<td>D_SW</td>
<td>VDD = 3.0V, See Figure 1</td>
<td>88</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>
Typical Characteristics

- V_{CS}, I_{IN} vs. Inductor Value
- I_{DD} vs. V_{DD}
- V_{CS}, I_{IN} vs. V_{IN}
- V_{CS}, I_{IN} vs. V_{IN}
- V_{CS}, I_{IN} vs. V_{IN}
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Positive voltage supply for the IMP803. Inductor L may be connected here or to a separate unregulated supply.</td>
</tr>
<tr>
<td>2</td>
<td>RSW-OSC</td>
<td>Switch-mode resistor pin. Switching frequency is determined by an external resistor, RSW.</td>
</tr>
<tr>
<td>3</td>
<td>CS</td>
<td>Boost converter storage capacitor. The voltage across the EL lamp is equal to twice the voltage at CS.</td>
</tr>
<tr>
<td>4</td>
<td>LX</td>
<td>Connection to flyback inductance, L.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pin.</td>
</tr>
<tr>
<td>6</td>
<td>Vb</td>
<td>EL lamp drive. The lamp is connected in a high-voltage bridge circuit with Vb providing the complementary connection to Va. The peak-to-peak AC voltage across the EL lamp is thus two times VCS.</td>
</tr>
<tr>
<td>7</td>
<td>Va</td>
<td>EL lamp drive. (See above)</td>
</tr>
<tr>
<td>8</td>
<td>REL-OSC</td>
<td>The EL lamp oscillator frequency setting pin. The oscillator frequency is controlled by external resistor REL.</td>
</tr>
</tbody>
</table>

External Components

<table>
<thead>
<tr>
<th>External Component</th>
<th>Description and Selection Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>Catch diode. A fast reverse recovery diode, with BV > 100, such as a 1N4148.</td>
</tr>
<tr>
<td>Capacitor CS</td>
<td>This is the high voltage capacitor that stores the inductive energy transferred through the catch diode. A 100 volt capacitor between 10nF and 100nF is recommended.</td>
</tr>
<tr>
<td>Resistor REL</td>
<td>The EL lamp oscillator frequency setting resistor. This resistor, connected between the REL-OSC pin and VDD, provides an oscillator frequency inversely proportional to REL; as REL increases, the EL lamp frequency decreases along with the current drawn by the lamp. Lamp color is also determined by this frequency. A 2MΩ resistor between the REL-OSC pin and the VDD supply results in a lamp frequency around 350Hz: a 1MΩ resistor will give ≈700Hz.</td>
</tr>
<tr>
<td>Resistor RSW</td>
<td>Switching Oscillator frequency setting resistor. The switching oscillator resistor is connected between the RSW-OSC pin and the VDD supply. The switching frequency is inversely proportional to the resistor value, dropping as the resistance increases.</td>
</tr>
<tr>
<td>Inductor L</td>
<td>The inductor provides the voltage boost needed by means of inductive “flyback”. The internal MOSFET switch alternately opens and closes the ground connection for the inductor at the LX pin. When this internal switch opens, the inductor potential will forward-bias the catch diode and the current will pass through the storage capacitor CS, charging it to a high voltage. Smaller inductors are preferred to prevent saturation. As the value of the inductor increases (and the series DC resistance of the inductor decreases), the switching frequency set by RSW should be increased to prevent saturation. In general, smaller value inductors that can handle more current are more desirable when larger area EL lamps must be driven.</td>
</tr>
<tr>
<td>Lamp, RCL</td>
<td>An external resistor (RCL) in series with the lamp will protect the output drivers from high transient currents during lamp commutation.</td>
</tr>
</tbody>
</table>

High Voltages Present

The IMP803 generates high voltages and caution should be exercised.
Test and Application Circuit, 3.0V

Figure 1 shows the IMP803 configured to drive a 3-square-inch EL lamp, represented as a 10nF capacitor. With a 3.0V input, the EL lamp will be driven to moderate brightness.

![Diagram 1](803_09.eps)

Note:
1. Murata part # LQH4N561K04 (DC resistance <14.5 Ω)
2. Larger values may be required depending upon supply impedance.

Figure 1. 3.0V Application

Test and Application Circuit, 5.0V

Figure 2 shows a 5.0V input application driving a 6-square-inch EL lamp.

![Diagram 2](803_10.eps)

Note:
1. Murata part # LQH4N561K04 (DC resistance <14.5 Ω)
2. Larger values may be required depending upon supply impedance.

Figure 2. 5.0V Application
Test and Application Circuit, 6.0V

At higher input voltage levels, the IMP803 will drive large EL lamps. Figure 3 shows a 6.0V circuit configuration that will drive a 10 square-inch lamp.

Enable/Disable Table

<table>
<thead>
<tr>
<th>RSW Connection</th>
<th>IMP803 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Enabled</td>
</tr>
<tr>
<td>GND</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Enable/Disable Operation

Figure 4 shows that the IMP803 can be enabled via a logic gate that connects \(R_{SW} \) to \(V_{DD} \) and disabled by connecting it to ground.

Note:
1. Murata part # LQH4N561K04 (DC resistance < 14.5 \(\Omega \))
2. Larger values may be required depending upon supply impedance.

Figure 4. Enable/Disable Operation
Dual Supply Operation with 1.5V Battery

The IMP803 can also operate from a single battery cell when a regulated voltage higher than 2.0V is also available. This dual supply configuration, shown in Figure 5, uses the regulated voltage to operate the IMP803 while the energy for the high-voltage boost circuit comes from the battery.

The circuit of Figure 5 thus allows operation with batteries that are below the 2V minimum specification or above the 6.0V maximum operating voltage.

Switch Resistance

The IMP803 inductor switch resistance is typically below 3.5Ω, as shown in Figure 6.

![Figure 5. Dual Supply Operation](image1)

![Figure 6. Boost Switch On Resistance](image2)
IMP525
Single Cell Battery Powered EL Lamp Driver

General Information

- Die Thickness: 25 mils (625 microns)
- Bond Wire Size: 1.0 mil (25 microns)
- Back Side Metal: None
- Back Side Potential: Ground
- Die Attach Method: Conductive Adhesive
- Bond Pad Metal: Aluminum, 1% Silicon, 1/2% Copper
- Bond Pad Size: 100 microns per side
- Die Size: 1.35mm x 1.54mm

Pad Description

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Positive voltage supply.</td>
</tr>
<tr>
<td>2</td>
<td>RSW-OSC</td>
<td>Switch-mode oscillator frequency setting pad.</td>
</tr>
<tr>
<td>3</td>
<td>C_S</td>
<td>Boost converter storage capacitor pad.</td>
</tr>
<tr>
<td>4</td>
<td>L_x</td>
<td>Inductor pad.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pad.</td>
</tr>
<tr>
<td>6</td>
<td>V_B</td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>7</td>
<td>V_A</td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>8</td>
<td>R_EL-OSC</td>
<td>EL lamp oscillator frequency setting pad.</td>
</tr>
<tr>
<td>9*</td>
<td>DIS</td>
<td>Disable pad. DIS = HIGH disables chip.</td>
</tr>
</tbody>
</table>

* See Ordering Information table

Pad Location

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>X (microns)</th>
<th>Y (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1153</td>
<td>1092</td>
</tr>
<tr>
<td>2</td>
<td>476</td>
<td>1226</td>
</tr>
<tr>
<td>3</td>
<td>314</td>
<td>1226</td>
</tr>
<tr>
<td>4</td>
<td>143</td>
<td>1216</td>
</tr>
<tr>
<td>5</td>
<td>111</td>
<td>460</td>
</tr>
<tr>
<td>6</td>
<td>397</td>
<td>112</td>
</tr>
<tr>
<td>7</td>
<td>1104</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>1153</td>
<td>958</td>
</tr>
<tr>
<td>9</td>
<td>1153</td>
<td>1226</td>
</tr>
</tbody>
</table>

Notes 1. To bonding pad center

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Pad Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP525/D</td>
<td>9</td>
<td>Disable Pad Active</td>
</tr>
<tr>
<td>IMP525/D1</td>
<td>9</td>
<td>Disable Pad Not Active</td>
</tr>
</tbody>
</table>
IMP527
Single Cell Battery Powered EL Lamp Driver, 180V_{PP} Drive

General Information

- **Die Thickness:** 25 mils (625 microns)
- **Bond Wire Size:** 1.0 mil (25 microns)
- **Back Side Metal:** None
- **Back Side Potential:** Ground
- **Die Attach Method:** Conductive Adhesive
- **Bond Pad Metal:** Aluminum, 1% Silicon, 1/2% Copper
- **Bond Pad Size:** 100 microns per side
- **Die Size:** 1.35mm x 1.54mm

Pad Description

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{DD}</td>
<td>Positive voltage supply.</td>
</tr>
<tr>
<td>2</td>
<td>R_{SW-OSC}</td>
<td>Switch-mode oscillator frequency setting pad.</td>
</tr>
<tr>
<td>3</td>
<td>C_s</td>
<td>Boost converter storage capacitor pad.</td>
</tr>
<tr>
<td>4</td>
<td>L_x</td>
<td>Inductor pad.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pad.</td>
</tr>
<tr>
<td>6</td>
<td>V_{B}</td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>7</td>
<td>V_{A}</td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>8</td>
<td>R_{EL-OSC}</td>
<td>EL lamp oscillator frequency setting pad.</td>
</tr>
<tr>
<td>9*</td>
<td>DIS</td>
<td>Disable pad. DIS = HIGH disables chip.</td>
</tr>
</tbody>
</table>

See Ordering Information table

Pad Location

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>X (microns)</th>
<th>Y (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1153</td>
<td>1092</td>
</tr>
<tr>
<td>2</td>
<td>476</td>
<td>1226</td>
</tr>
<tr>
<td>3</td>
<td>314</td>
<td>1226</td>
</tr>
<tr>
<td>4</td>
<td>143</td>
<td>1216</td>
</tr>
<tr>
<td>5</td>
<td>111</td>
<td>460</td>
</tr>
<tr>
<td>6</td>
<td>397</td>
<td>112</td>
</tr>
<tr>
<td>7</td>
<td>1104</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>1153</td>
<td>958</td>
</tr>
<tr>
<td>9</td>
<td>1153</td>
<td>1226</td>
</tr>
</tbody>
</table>

Notes 1. To bonding pad center

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Disable Pad Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP527/D</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>IMP527/D1</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
IMP528
High-Voltage EL Lamp Driver, 220V_{pp} Drive

General Information

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V<sub>DD</sub></td>
<td>Positive voltage supply.</td>
</tr>
<tr>
<td>2</td>
<td>R<sub>SW-OSC</sub></td>
<td>Switch-mode oscillator frequency setting pad.</td>
</tr>
<tr>
<td>3</td>
<td>C<sub>S</sub></td>
<td>Boost converter storage capacitor pad.</td>
</tr>
<tr>
<td>4</td>
<td>L<sub>X</sub></td>
<td>Inductor pad.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pad.</td>
</tr>
<tr>
<td>6</td>
<td>V<sub>B</sub></td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>7</td>
<td>V<sub>A</sub></td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>8</td>
<td>R<sub>EL-OSC</sub></td>
<td>EL lamp oscillator frequency setting pad.</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground pad.</td>
</tr>
<tr>
<td>10*</td>
<td>DIS</td>
<td>Disable pad. DIS = HIGH disables chip.</td>
</tr>
</tbody>
</table>

See Ordering Information table

Pad Location

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>X (microns)</th>
<th>Y (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>152</td>
<td>1480</td>
</tr>
<tr>
<td>2</td>
<td>152</td>
<td>1253.5</td>
</tr>
<tr>
<td>3</td>
<td>152</td>
<td>387.75</td>
</tr>
<tr>
<td>4</td>
<td>152</td>
<td>122.5</td>
</tr>
<tr>
<td>5</td>
<td>1198.5</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>1215</td>
<td>395</td>
</tr>
<tr>
<td>7</td>
<td>1215</td>
<td>1208.5</td>
</tr>
<tr>
<td>8</td>
<td>1234</td>
<td>1508.5</td>
</tr>
<tr>
<td>9</td>
<td>998</td>
<td>122.5</td>
</tr>
<tr>
<td>10</td>
<td>382</td>
<td>1553.5</td>
</tr>
</tbody>
</table>

Notes 1. To bonding pad center

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Disable Pad Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP528/D</td>
<td>10</td>
<td>Disable Pad Active</td>
</tr>
<tr>
<td>IMP528/D1</td>
<td>10</td>
<td>Disable Pad Not Active</td>
</tr>
</tbody>
</table>
IMP560
Power Efficient EL Lamp Driver

General Information
- Die Thickness: 25 mils (625 microns)
- Bond Wire Size: 1.0 mil (25 microns)
- Back Side Metal: None
- Back Side Potential: Ground
- Die Attach Method: Conductive Adhesive
- Bond Pad Metal: Aluminum, 1% Silicon, 1/2% Copper
- Bond Pad Size: 100 microns per side
- Die Size: 1.38mm x 1.82mm

Pad Description

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Positive voltage supply.</td>
</tr>
<tr>
<td>2</td>
<td>RSW-OSC</td>
<td>Switch-mode oscillator frequency setting pad.</td>
</tr>
<tr>
<td>3</td>
<td>CS</td>
<td>Boost converter storage capacitor pad.</td>
</tr>
<tr>
<td>4</td>
<td>Lx</td>
<td>Inductor pad.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pad.</td>
</tr>
<tr>
<td>6</td>
<td>VB</td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>7</td>
<td>VA</td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>8</td>
<td>REL-OSC</td>
<td>EL lamp oscillator frequency setting pad.</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground pad.</td>
</tr>
<tr>
<td>10</td>
<td>DIS</td>
<td>Disable pad. DIS = HIGH disables chip.</td>
</tr>
</tbody>
</table>

See Ordering Information table

Pad Location

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>X (microns)</th>
<th>Y (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>152</td>
<td>1480</td>
</tr>
<tr>
<td>2</td>
<td>152</td>
<td>1253.5</td>
</tr>
<tr>
<td>3</td>
<td>152</td>
<td>387.75</td>
</tr>
<tr>
<td>4</td>
<td>152</td>
<td>122.5</td>
</tr>
<tr>
<td>5</td>
<td>1198.5</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>1215</td>
<td>395</td>
</tr>
<tr>
<td>7</td>
<td>1215</td>
<td>1208.5</td>
</tr>
<tr>
<td>8</td>
<td>1234</td>
<td>1508.5</td>
</tr>
<tr>
<td>9</td>
<td>998</td>
<td>122.5</td>
</tr>
<tr>
<td>10</td>
<td>382</td>
<td>1553.5</td>
</tr>
</tbody>
</table>

Notes: 1. To bonding pad center

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Pad Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP560/D</td>
<td>10</td>
<td>Disable Pad Active</td>
</tr>
<tr>
<td>IMP560/D1</td>
<td>10</td>
<td>Disable Pad Not Active</td>
</tr>
</tbody>
</table>
IMP803
High-Voltage EL Lamp Driver

General Information
- **Die Thickness:** 25 mils (625 microns)
- **Bond Wire Size:** 1.0 mil (25 microns)
- **Back Side Metal:** None
- **Back Side Potential:** Ground
- **Die Attach Method:** Conductive Adhesive
- **Bond Pad Metal:** Aluminum, 1% Silicon, 1/2% Copper
- **Bond Pad Size:** 100 microns per side
- **Die Size:** 1.38mm x 1.82mm

Pad Description

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Positive voltage supply.</td>
</tr>
<tr>
<td>2</td>
<td>RSW-OSC</td>
<td>Switch-mode oscillator frequency setting pad.</td>
</tr>
<tr>
<td>3</td>
<td>Cₛ</td>
<td>Boost converter storage capacitor pad.</td>
</tr>
<tr>
<td>4</td>
<td>Lₓ</td>
<td>Inductor pad.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground pad.</td>
</tr>
<tr>
<td>6</td>
<td>Vₛ</td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>7</td>
<td>Vₐ</td>
<td>EL lamp drive.</td>
</tr>
<tr>
<td>8</td>
<td>R_EL-OSC</td>
<td>EL lamp oscillator frequency setting pad.</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground pad.</td>
</tr>
<tr>
<td>10*</td>
<td>DIS</td>
<td>Disable pad. DIS = HIGH disables chip.</td>
</tr>
</tbody>
</table>

* See Ordering Information table

Pad Location

![Pad Location Diagram]

<table>
<thead>
<tr>
<th>Pad Number</th>
<th>X (microns)</th>
<th>Y (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>152</td>
<td>1480</td>
</tr>
<tr>
<td>2</td>
<td>152</td>
<td>1253.5</td>
</tr>
<tr>
<td>3</td>
<td>152</td>
<td>387.75</td>
</tr>
<tr>
<td>4</td>
<td>152</td>
<td>122.5</td>
</tr>
<tr>
<td>5</td>
<td>1198.5</td>
<td>140</td>
</tr>
<tr>
<td>6</td>
<td>1215</td>
<td>395</td>
</tr>
<tr>
<td>7</td>
<td>1215</td>
<td>1208.5</td>
</tr>
<tr>
<td>8</td>
<td>1234</td>
<td>1508.5</td>
</tr>
<tr>
<td>9</td>
<td>998</td>
<td>122.5</td>
</tr>
<tr>
<td>10</td>
<td>382</td>
<td>1553.5</td>
</tr>
</tbody>
</table>

Notes
1. To bonding pad center

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Pad Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP803SX</td>
<td>10</td>
<td>Disable Pad Active</td>
</tr>
<tr>
<td>IMP803/D1</td>
<td>10</td>
<td>Disable Pad Not Active</td>
</tr>
</tbody>
</table>
Electroluminescent Lamp Driver Evaluation Board

Introduction

This Application Note introduces an Evaluation Board for IMP EL driver ICs. It is supplied with the IMP803 but can also be used with the IMP560 and IMP525: all 3 have identical pinouts.

EL Lamps and Drivers

An electroluminescent (EL) lamp consists of a phosphor coating on a dielectric that is sandwiched between two conductors. Electrically, it looks like a capacitor. Such a lamp requires drive from a high alternating voltage source in order to emit light. This can be obtained from IMP integrated circuits IMP803, IMP560 and IMP525 that convert low voltages into appropriate high-voltage waveforms.

Small EL lamps exhibit about 2 to 6nF/in². IMP Driver ICs are capable of powering EL lamps that have total equivalent load capacitances up to 30nF, so this works out to a maximum of around 15 square inches. “Powering” in this context means enabling enough light for the application, which can range from LCD backlights (relatively bright in a handheld device) to pagers (medium-bright, in a poorly-lit room), to night-lights (faint, in a dark room).

IMP Driver IC System Diagram

As shown in Figure 1, these ICs contain a high-voltage MOSFET switch, an output H-bridge, and oscillators to drive each. The switch, combined with an external inductor and diode, form a step-up (boost) converter that transforms the input voltage to 45-90 volts across capacitor CS. This, in turn, is switched from one side of the load (the EL lamp) to the other by a commutating bridge, driven by its own oscillator. This action causes the lamp to experience twice the CS value (i.e. 90-180 volts peak-to-peak) with no DC component.

A typical application uses a switch frequency of 80kHz and bridge commutation frequency of 360Hz. These frequencies are controllable via external resistors; RSW for the boost converter and REL for the output driver. REL influences brightness, color and EL lamp life. RSW controls converter efficiency. Both affect power consumption.

Figure 1. Circuitry in gray is on-chip.
Driver Variations

The IMP803, 560 and 525 have an internal regulating circuit (see Figure 2), that is useful where V_{IN} is expected to change considerably, as with an aging battery: as V_{IN} falls, V_{OUT} (and brightness) will remain substantially unaffected.

Table 1 is a general comparison of IMP EL Lamp drivers. It facilitates choices based on number of batteries, size of display, and regulation. Required display brightness will also need to be factored into the choice.

Table 1. General Characteristics of IMP EL Lamp Drivers

<table>
<thead>
<tr>
<th>Device</th>
<th>V_{IN}</th>
<th>V_{OUT}</th>
<th>Regulated Output</th>
<th>Max. Switch R(on)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP803</td>
<td>2.4 – 6.5V</td>
<td>180Vpp</td>
<td>Yes</td>
<td>8Ω</td>
</tr>
<tr>
<td>IMP560</td>
<td>2.4 – 6.5V</td>
<td>120Vpp</td>
<td>Yes</td>
<td>8Ω</td>
</tr>
<tr>
<td>IMP525</td>
<td>0.9 – 2.5V</td>
<td>112Vpp</td>
<td>Yes</td>
<td>15Ω</td>
</tr>
</tbody>
</table>

Basic Circuit, Plus Variations

In normal operation, V_{DD} is one or two 1.5V cells and L1 is a tiny ferrite-bobbin inductor. R_{SW} and R_{EL} control their respective oscillators. If a logic-controllable shutdown is desired, R_{SW} may be switched between V_{DD} and GND ($I_{DDQ} = 1\mu A$ max.). Conversely, if shutdown is via V_{DD}, R_{SW} should then be connected to V_{DD} as shown by the dotted line in Figure 3.

R_{CL} is included to protect the bridge against peak currents during commutation. A value of 500Ω to 2kΩ is suitable.

In use, the inductor current can reach several tens of milliamperes, so in single-battery applications it is recommended that the low-current shutdown capability of the driver IC be utilized. This is done by connecting R_{SW} (point A on the schematics) to either V_{DD} (ON) or GND (OFF). With power source(s) connected, shutdown (standby) current is typically much lower than 1μA.
Reducing Component Count

Having said that keeping R_{CL} is a good idea, it is true that removing as many components as possible may also be desirable. For the IMP803, R_{EL} and R_{SW} may be combined as shown in Figure 4. Varying R_{EL} causes a visible change in brightness and color, but a similar variation in R_{SW} (affecting oscillator frequency and power consumption) is much less noticeable. Combining the two is thus a valid way to save a resistor. The bypass capacitor C_{BP} (IMP525 only) reduces display flicker in noisy environments, such as when there is no ground plane.

Using the circuit in Figure 5, one can utilize an available V_{IN} that is higher or lower than the allowable V_{DD}. The logic shutdown may also be separated from V_{DD}. Such arrangements are helpful when the inductor supply is too low for the IC, or the display size requires a voltage that is too high for the IC.

A higher V_{IN} will need a higher switching frequency to keep the inductor out of saturation. In all cases, note the presence of HIGH VOLTAGE!

Figure 4. Using R_{SW} to supply current for both switch and EL oscillators, and also serve as a low-current on/off switch (IMP803 only).

Figure 5. General Circuit, where chip V_{DD}, on/off logic and V_{IN} are all different.
Evaluation Board

The ELD002 is a PC board for evaluation and experimentation purposes. More compact arrangements are easily achieved by using surface-mounted components exclusively. The various possible connections mirror the options discussed in the data sheet and the Application Note.

The two dark patches are the connections for the EL lamp which are made using conductive double-sided tape. The display itself is held down with ordinary double-sided tape. Taping is advantageous for several reasons, among which are that lamps with staked connecting terminals generally cost more, and they are a possible site for mechanical (and thus electrical) failure.

As a general precaution, note that HIGH VOLTAGE exists on the board; around 180V or so. The current level is low so there is no danger, except possible pain if a tender skin area or open cut contacts the HV sections.

There are extra holes for capacitors (if needed), and the hole spacings are wide enough to accommodate 1/4W resistors. Corner mounting holes have also been provided.

Figure 6. Evaluation Board Layout and Schematic.
Some Battery Considerations

To keep the board light in weight, a Li-Mn power source was selected. When energized, the drain from the circuit is around 22mA, thus the CR battery chemistry is preferred over the BR for its superior pulse performance. If long-term continual illumination is anticipated and space is not an issue, alkaline batteries may be more economical.

With the IMP803 and 560μH inductor supplied, regulation begins at about 3-3.5V, but display illumination appears virtually unchanged above 2.7V. When choosing the battery chemistry, it is a good idea to match the cell “plateau” voltages to this. For example, a typical NiCad plateau is 1.2V under load, so more than 2 cells would be needed. Alkaline plateaus are somewhat higher, and they differ with size, shape and duty, so 2 cells could suffice. Li-Mn coin cells have their voltage plateau under load at about 2.85 volts. They can drop lower, but they also return to close to 3V when the load is removed.

Additional Points

1) To experiment with the Figure 4 scheme, a jumper may be run from the rightmost pad of \(R_{EL} \) to the leftmost pad of \(C_{BP} \) (with the + above it). Start with an \(R_{SW} \) of 750kΩ. Short leads and a ground plane are more critical in this arrangement.

2) \(C_S \) should be 10nF - 100nF.

3) The IMP803, IMP560 and IMP525 datasheets show performance with different inductors. For example, high-voltage regulation is reached earlier with lower L, but this requires more current. This may be partially offset by adjustment of the oscillator resistors.

4) To experiment with multiple supplies, the appropriate jumpers may be removed.

5) The inclusion of \(R_{CL} \) should be stressed: while 500Ω to 10kΩ has been used, 2kΩ is the best all-around value.

Layout Rules for Other Arrangements

1) A ground plane is recommended to keep stray high frequencies confined. In a very small area, the need for a ground plane may be nil. A totally surface-mount arrangement would make such a plane difficult anyway.

2) Locate high voltages away from the high-impedance elements \(R_{EL} \) and \(R_{SW} \).

3) Make sure that \(C_S \) has a rating of at least 100V.

4) The diode should have good reverse-recovery characteristics (the general-purpose 1N4148 is adequate) and should be rated for pulsed BV > 100V for the IMP803, and pulsed BV > 75V for the IMP560 and IMP525.

5) Shutdown by a logic-level signal is possible by connecting \(R_{SW} \) to ground (\(R_{SW} \) is normally connected to \(V_{DD} \)). This on/off logic uses only 1μA max. when connected at this location.

7) Required voltage ratings for the capacitors other than \(C_S \) are flexible, and need only reflect actual stresses plus a safety margin.
Bill of Materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors (±5%)</td>
<td>See Table, below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitors (±20%)</td>
<td>See Table, below</td>
<td>Murata</td>
<td>RPE121/122 Series</td>
</tr>
<tr>
<td>Switch</td>
<td>SPST, momentary</td>
<td>Panasonic</td>
<td>P8008S</td>
</tr>
<tr>
<td>Battery</td>
<td>3.0V Li-Mn Coin</td>
<td>Sony</td>
<td>CR2450-HE4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Panasonic</td>
<td>CR2354-IGU</td>
</tr>
<tr>
<td>Inductor</td>
<td>L1 = 560µH</td>
<td>Murata</td>
<td>LQH4N561K04</td>
</tr>
<tr>
<td>Diode</td>
<td>D1 = 1N4148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamp</td>
<td>1.3” x 2.05”</td>
<td>MetroMark or other</td>
<td></td>
</tr>
<tr>
<td>Conductive Tape</td>
<td>Connects display</td>
<td>Adhesives Research</td>
<td>ARclad 801</td>
</tr>
<tr>
<td>Double-Sided Tape</td>
<td>Holds display down</td>
<td>3M</td>
<td>Type 665</td>
</tr>
</tbody>
</table>

Key to Components and Ratings

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSW</td>
<td>30kΩ to 3MΩ</td>
<td>Sets switch osc. frequency.</td>
<td>Decrease R to increase frequency.</td>
</tr>
<tr>
<td>REL</td>
<td>500kΩ to 10MΩ</td>
<td>Sets bridge osc. frequency.</td>
<td>Decrease R to increase frequency.</td>
</tr>
<tr>
<td>RCL</td>
<td>500Ω to 2kΩ</td>
<td>Limits output current.</td>
<td>Protects IC.</td>
</tr>
<tr>
<td>CS</td>
<td>0.01µF to 0.1µF, 100V</td>
<td>Stores high voltage.</td>
<td>Use low values for large lamps.</td>
</tr>
<tr>
<td>CBATT</td>
<td>0.1µF, 10V</td>
<td>Supply bypass.</td>
<td>Keeps supply impedance low.</td>
</tr>
<tr>
<td>CBP</td>
<td>1nF, 10V</td>
<td>Lowers noise at RSW.</td>
<td>IMP525 only.</td>
</tr>
<tr>
<td>CIN</td>
<td>0.1µF to 22µF</td>
<td>Supply bypass.</td>
<td>Keeps supply impedance low.</td>
</tr>
<tr>
<td>L1</td>
<td>100µH to 1mH</td>
<td>Stores energy.</td>
<td>Small L, high f increases Vout.</td>
</tr>
<tr>
<td>D1</td>
<td>100V, 10mA (1N4148)</td>
<td>Passes energy from L to CS.</td>
<td>Use fast recovery type.</td>
</tr>
</tbody>
</table>

APPENDIX: Introduction to EL Lamps

Chemical compounds, called phosphors, glow when energy is applied to them. This excitation energy can come from conducted or radiated electrons, or an electric field. A common example of this process is found in the emitted (radiated) electrons that impinge on the dots and stripes of color monitors and TVs, whose phosphors emit everything from pure colors to white light, depending on their formulations.

Backlights and lamps generally are simpler, employing a manganese-activated zinc sulfide phosphor (ZnS:Mn) that is excited by a high-voltage (> 40V) AC electric field (DC can shorten the lamp life). Fabrication involves depositing the phosphor as a thin film onto a BaTiO3 dielectric between conducting planes, like a capacitor: one of the planes is the transparent conductor, indium tin oxide (ITO). The lamp color depends on phosphor formulation, but also on its physical realization (i.e. encapsulation, resins, dyes, etc.), plus the characteristics of the drive circuitry.

The IMP line of drivers is targeted mainly at applications like backlight EL and stand-alone pre-printed or segmented lamps. Backlights are used with the Liquid Crystal Displays (LCDs) found in cellular telephones, pagers, Personal Digital Assistants (PDAs), and general-purpose local lighting applications where low power consumption without heat is important (e.g. airline cockpits, medical instrumentation).

The excitation required for lamps ranges from tens to hundreds of volts, at frequencies from 60Hz to a few kHz. Each display has an optimum combination depending on size, color, efficiency and desired brightness.

In general, the changes in brightness with frequency and voltage are nearly linear. These facts allow tradeoffs. For example, if going above a certain voltage is not allowed, an increase in drive frequency may achieve the same result.
Introduction

These Demonstration Boards provide a platform for demonstration and experimentation with IMP’s EL lamp drivers IMP803, IMP560 and IMP525. The PC board has space for all of the components required for a complete application circuit. In addition, compact size facilitates their use in prototype systems.

For normal operation, the enable pad (EN), the VDD pad and the VL pad are all connected to the positive supply voltage. If the board is located far from the supply, a 10µF/10V tantalum capacitor from VL to GND should be used to keep supply impedance low (This cap, or its equivalent, is normally present in a manufactured circuit). Also, better noise immunity may be achieved by utilizing separate wires for the VL and VDD connections.

The CBATT capacitor is used to bypass the supply pin of the IC. The CSW capacitor (IMP525 only) is utilized to reduce noise on the high impedance RSW pin. CSW should never be greater than 100pF since this can result in instability of the 525’s internal oscillator.

The layout was designed to reduce the effects of noise through use of a ground plane and by separation of the high-current components (inductor, diode, and reservoir capacitor) from the high-impedance portion of the circuit (the high-value frequency-setting resistors). Additionally, the lengths of high-current traces were minimized.

If parts are replaced or exchanged by hand-soldering, care should be taken to thoroughly clean the residual flux from the board surface. Otherwise, resultant leakage currents may prevent proper operation of the part. The tight spacing and high impedances of input nodes on the PCB exacerbate this effect. The predominant impact of PCB leakage is a shift in the switch and commutation frequencies away from their designed values due to leakage currents from the RSW and REL pins.

Figure 1. Top View of Printed Circuit Board
Figure 2. Demonstration Board Schematic.

Table 1. Bill of Materials (use as required)

<table>
<thead>
<tr>
<th>Component</th>
<th>Package</th>
<th>Manufacturer and Part Number</th>
<th>IMP803</th>
<th>IMP560</th>
<th>IMP525</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{SW}</td>
<td>0603</td>
<td>Any</td>
<td>750kΩ</td>
<td>750kΩ</td>
<td>1MΩ</td>
</tr>
<tr>
<td>R_{EL}</td>
<td>0603</td>
<td>Any</td>
<td>2MΩ</td>
<td>2MΩ</td>
<td>1MΩ</td>
</tr>
<tr>
<td>R_{CL}</td>
<td>0603</td>
<td>Any</td>
<td>510Ω</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>L_1</td>
<td>1812</td>
<td>Murata LQH4N561K04</td>
<td>560μH</td>
<td>560μH</td>
<td>560μH</td>
</tr>
<tr>
<td>C_S</td>
<td>0805</td>
<td>NovaCap 0805B683K101NT</td>
<td>68nF/100V</td>
<td>68nF/100V</td>
<td>68nF/100V</td>
</tr>
<tr>
<td>D_1</td>
<td>SOD80</td>
<td>4148-type</td>
<td>100V</td>
<td>75V</td>
<td>75V</td>
</tr>
<tr>
<td>C_{BATT}</td>
<td>0603</td>
<td>Any</td>
<td>100nF</td>
<td>100nF</td>
<td>100nF</td>
</tr>
</tbody>
</table>

Table 2. Component Description Table

<table>
<thead>
<tr>
<th>Component</th>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{SW}</td>
<td>Sets switch frequency</td>
<td>Decreasing R increases frequency.</td>
</tr>
<tr>
<td>R_{EL}</td>
<td>Sets commutation frequency</td>
<td>Decreasing R increases frequency.</td>
</tr>
<tr>
<td>R_{CL}</td>
<td>Limits output current</td>
<td>Optional external part: protects bridge if $V(C_S) > 80V$ (IMP803 only).</td>
</tr>
<tr>
<td>L_1</td>
<td>Boost inductor</td>
<td>Delivers energy to C_S.</td>
</tr>
<tr>
<td>C_S</td>
<td>Reservoir capacitor</td>
<td>Delivers energy to commutating bridge.</td>
</tr>
<tr>
<td>C_{SW}</td>
<td>Noise reduction capacitor</td>
<td>Optional, use if flickering is observed (IMP525 only).</td>
</tr>
<tr>
<td>C_{BATT}</td>
<td>Supply bypass capacitor</td>
<td>Optional (use if missing from external circuit)</td>
</tr>
<tr>
<td>D_1</td>
<td>Catch diode</td>
<td>Fast recovery diode recommended. Observe B_{REV}.</td>
</tr>
</tbody>
</table>
Package Dimensions

MicroSO (8-Pin)

<table>
<thead>
<tr>
<th>Parts/Reel</th>
<th>3000</th>
</tr>
</thead>
</table>

SO (8-Pin)

<table>
<thead>
<tr>
<th>Parts/Reel</th>
<th>3000</th>
</tr>
</thead>
</table>

Package Information

SO (8-Pin)

<table>
<thead>
<tr>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>A</td>
<td>0.053</td>
</tr>
<tr>
<td>A1</td>
<td>0.004</td>
</tr>
<tr>
<td>B</td>
<td>0.013</td>
</tr>
<tr>
<td>C</td>
<td>0.007</td>
</tr>
<tr>
<td>E</td>
<td>0.150</td>
</tr>
<tr>
<td>H</td>
<td>0.228</td>
</tr>
<tr>
<td>L</td>
<td>0.016</td>
</tr>
<tr>
<td>D</td>
<td>0.189</td>
</tr>
</tbody>
</table>

MicroSO (8-Pin)

<table>
<thead>
<tr>
<th></th>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>0.0020</td>
<td>0.0059</td>
</tr>
<tr>
<td>A1</td>
<td>0.0295</td>
<td>0.0374</td>
</tr>
<tr>
<td>b</td>
<td>0.0098</td>
<td>0.0157</td>
</tr>
<tr>
<td>C</td>
<td>0.0051</td>
<td>0.0091</td>
</tr>
<tr>
<td>D</td>
<td>0.1142</td>
<td>0.1220</td>
</tr>
<tr>
<td>e</td>
<td>0.0256 BSC</td>
<td>0.65 BSC</td>
</tr>
<tr>
<td>E</td>
<td>0.193 BSC</td>
<td>4.90 BSC</td>
</tr>
<tr>
<td>E1</td>
<td>0.1142</td>
<td>0.1220</td>
</tr>
<tr>
<td>L</td>
<td>0.0157</td>
<td>0.0276</td>
</tr>
<tr>
<td>a</td>
<td>0°</td>
<td>6°</td>
</tr>
</tbody>
</table>
Embossed Tape — Constant Dimensions

<table>
<thead>
<tr>
<th>Tape Size</th>
<th>D</th>
<th>E</th>
<th>P0</th>
<th>P2</th>
<th>T Max.</th>
<th>T1 Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8mm</td>
<td>1.5 ± 0.10 (0.59 ± 0.004)</td>
<td>1.75 ± 0.10 (0.069 ± 0.004)</td>
<td>4.0 ± 0.10 (0.157 ± 0.004)</td>
<td>2.0 ± 0.05 (0.079 ± 0.002)</td>
<td>0.600 (0.024)</td>
<td>0.10 (0.004)</td>
</tr>
<tr>
<td>12mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Embossed Tape — Variable Dimensions

<table>
<thead>
<tr>
<th>Tape Size</th>
<th>A0, B0, K0</th>
<th>B1 See Note 4</th>
<th>D1 See Note 3</th>
<th>F</th>
<th>T2</th>
<th>P1</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>8mm 1/2 Pitch</td>
<td>See Note 1</td>
<td>4.55 (0.179)</td>
<td>1.0 (0.039)</td>
<td>3.5 ± 0.05 (0.138 ± 0.002)</td>
<td>2.0 ± 0.10 (0.079 ± 0.004)</td>
<td>8.0 ± 0.3 (0.315 ± 0.012)</td>
<td></td>
</tr>
<tr>
<td>8mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12mm</td>
<td>See Note 1</td>
<td>8.2 (0.323)</td>
<td>1.5 (0.059)</td>
<td>5.5 ± 0.05 (0.217 ± 0.002)</td>
<td>6.5 Max. (0.256)</td>
<td></td>
<td>12.0 ± 0.30 (0.472 ± 0.012)</td>
</tr>
<tr>
<td>12mm Double Pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. A0, B0 and K0 are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A0, B0 and K0) must be within 0.05mm (0.002) minimum and 0.50mm (0.020) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see Component Rotation).
2. Tape with components shall pass around radius.
3. The embossment hole location shall be measured from the spocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
4. B1 dimension is a reference dimension for tape feeder clearance only.
Component Rotation

- 20° Maximum Component Rotation
- Typical Component Cavity Center Line
- Typical Component Center Line

Bending Radius

- R Min.

Tape Camber (Top View)

- 100mm (3.937)
- 1mm Max.
- 250mm (9.843)
- 1mm (.039) Max.

Allowable camber to be 1mm/100mm nonaccumulative over 250mm.

Tape Leader and Trailer Dimensions

- End
- Carrier Tape
- Components
- Start
- Cover Tape

- 160mm (6.30) Min.
- 390mm (15.35) Min.
- 560mm (22.05) Max.

User Direction of Feed
Reel Dimension

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8mm</td>
<td>330(12.992)</td>
<td>1.5(0.059)</td>
<td>13.0 ± 0.20(0.512 \pm 0.008)</td>
<td>20.2(0.795)</td>
<td>50(1.969)</td>
<td>(8.4 + 1.5) (0.331 + 0.059)</td>
<td>14.4(0.567)</td>
<td>7.9 Min.(0.311) 10.9 Max.(0.0429)</td>
</tr>
<tr>
<td>12mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(12.4 + 2.0) (0.488 + 0.078)</td>
<td>18.4(0.724)</td>
<td>11.9 Min.(0.469) 15.4 Max.(0.607)</td>
</tr>
</tbody>
</table>

Tape Layout

User Direction of Feed
IMP Sales Offices and Representatives

IMP, Inc.
Corporate Headquarters
2830 North First Street
San Jose, CA 95134
Main: 408.432.9100
Sales: 408.434.1277
Fax: 408.434.1215
E-Mail: info@impinc.com
URL: www.impweb.com

North American Sales
Venkat Vedire
IMP, Inc.
2830 North First Street
San Jose, CA 95134
Tel: 408.434.1427
Fax: 408.434.5904
E-Mail: venkat@impinc.com
URL: www.astec.ca

Asia Pacific Area Sales Office
Hong Kong/China, Philippines
Jacky Kwok
IMP, Inc.
101 Kitchener Road, #02-08
Jalan Besar Plaza
Singapore 208511
Phone: 65.398.0974
Fax: 65.296.0626
E-Mail: jackykwokhk_39@hotmail.com

IMP Foundry Services
Moiz Khambaty
IMP, Inc.
2830 North First Street
San Jose, CA 95134
Tel: 408.434.1206
Fax: 408.434.1215
E-Mail: moiz@impinc.com
URL: www.impweb.com

North American Representatives
Alabama
BITS, Inc.
Huntsville, AL
Tel: 256.534.4020
Fax: 256.534.0410
URL: www.bits1.com

Alaska
ELREPCO - Northwest
Beaverton, OR
Tel: 503.520.1900
Fax: 503.520.1906

Arizona
NELCO Two Company
Chandler, AZ
Tel: 408.726.2334
Fax: 408.726.2338

Arkansas
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
E-Mail: info@impinc.com
URL: www.impweb.com

California: Northern
Quorum Technical Sales
Santa Clara, CA
Tel: 408.980.0812
Fax: 408.748.1163

Sacramento Reno Area
Quorum Technical Sales
Paradise, CA
Tel: 530.877.5772
Fax: 530.699.4007

Southern California
Spectrum Rep Company
Westlake Village
Tel: 818.706.2919
Fax: 818.706.2978

Mission Viejo, CA
Tel: 949.367.3132
Fax: 949.367.3133

Canada
Astec Components Ltd.
Mississauga, Ontario, Canada
Tel: 905.607.1944
Fax: 905.607.9991
E-Mail: jbarton@astec.ca
URL: www.astec.ca

Colorado
PromoTech Sales
Westminster, CO
Tel: 303.920.2988
Fax: 303.255.0701

Connecticut
Agile Electronic Sales
Nasha, NH 03062
Tel: 603.595.8598
Fax: 603.595.8579
E-Mail: Agile@mediaone.net

Delaware
Astrorep Mid Atlantic, Inc.
Warminster, PA
Tel: 215.957.9580
Fax: 215.957.9583
URL: www.astrorep.com

Florida
Marathon Technical Sales
Orlando, FL
Tel: 407.872.5775
Fax: 407.872.0535

St. Petersburg, FL
Tel: 727.894.3603
Fax: 727.894.3804
URL: www.marathontech.com

Georgia
BITS, Inc.
Lawrenceville, GA
Tel: 770.513.8610
Fax: 770.513.8680
URL: www.bits1.com

Idaho
NELCO Two Company
Boise, ID
Tel: 208.343.9171
Fax: 208.343.9170

Illinois
Northern Illinois Area
Horizon Technical Sales, Inc.
Downtown Grove, IL
Tel: 630.852.2500
Fax: 630.852.2520
Email: lward@horizontechsales.com
URL: www.horizontechsales.com

Southern Illinois Area
Central Tech Sales, Inc.
St. Louis, MO
Tel: 314.878.6336
Fax: 314.878.6550

Indiana
Schillinger Associates, Inc.
Kokomo, IN
Tel: 765.457.7241
Fax: 765.457.7732

Iowa
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
Email: info@impinc.com
URL: www.impweb.com

Kansas
Central Tech Sales, Inc.
St. Louis, MO
Tel: 314.878.6336
Fax: 314.878.6550

Kentucky
Schillinger Associates, Inc.
Kokomo, IN
Tel: 765.457.7241
Fax: 765.457.7732
URL: www.sai-rep.com

Louisiana
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
Email: info@impinc.com
URL: www.impweb.com

Maine
Agile Electronic Sales, LLC.
Nashua, NH 03062
Tel: 603.595.8598
Fax: 603.595.8579
Email: Agile@mediaone.net

Maryland
Astrorep Mid Atlantic, Inc.
Pasadena, MD
Tel: 410.255.8470
Fax: 410.255.8470
URL: www.astrorep.com

Massachusetts
Agile Electronic Sales, LLC.
Nashua, NH 03062
Tel: 603.595.8598
Fax: 603.595.8579
Email: Agile@mediaone.net

Mexico
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
Email: info@impinc.com
URL: www.impweb.com

Michigan
Schillinger Associates, Inc.
Kokomo, IN
Tel: 765.457.7241
Fax: 765.457.7732
URL: www.sai-rep.com
Minnesota
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
Email: info@impinc.com
URL: www.impweb.com

Mississippi
BITS, Inc.
Huntsville, AL
Tel: 256.534.4020
Fax: 256.534.0410
URL: www.bits1.com

Missouri
Central Tech Sales, Inc.
St. Louis, MO
Tel: 314.878.6336
Fax: 314.878.6550

Montana
NELCO Two Company
Boise, ID
Tel: 208.343.9171
Fax: 208.343.9170

Nebraska
Central Tech Sales, Inc.
St. Louis, MO
Tel: 314.878.6336
Fax: 314.878.6550

New Hampshire
Agile Electronic Sales
Nashua, NH 03062
Tel: 603.595.8598
Fax: 603.595.8579
E-Mail: Agile@mediaone.net

New Jersey
Northern New Jersey Area
Astrorep New York, Inc.
Babylon, NY
Tel: 631.422.2500
Fax: 631.422.2504
URL: www.astrorep.com

Southern New Jersey Area
Astrorep Mid Atlantic, Inc.
Warminster, PA
Tel: 215.957.9580
Fax: 215.957.9583
Email: 100710.546@compuserve.com
URL: www.astrorep.com

New Mexico
NELCO Two Company
Albuquerque, NM
Tel: 505.293.1399
Fax: 505.293.1011

New York
Metro
Astrorep New York, Inc.
Babylon, NY
Tel: 631.422.2500
Fax: 631.422.2504
URL: www.astrorep.com

New York – Upstate Quality Components
Manlius – Main office
Tel: 315.682.8885
Fax: 315.682.2277
Colleville, PA
Tel: 610.831.0103
Fax: 610.831.0209

North Carolina
Eastern Area
BITS, Inc.
Raleigh, NC
Tel: 919.807.1000
Fax: 919.807.1001
URL: www.bits1.com

North Dakota
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
Email: info@impinc.com
URL: www.impweb.com

Ohio
The Lyons Corporation
Dayton, OH
Tel: 937.278.0714
Fax: 937.278.3609
E-Mail: corporate.office@lyonscorp.com
URL: www.lyonscorp.com

South Dakota
NASDAQ
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
Email: info@impinc.com
URL: www.impweb.com

Ohio
The Lyons Corporation
Dayton, OH
Tel: 937.278.0714
Fax: 937.278.3609
E-Mail: corporate.office@lyonscorp.com
URL: www.lyonscorp.com

Ohio: Cleveland, Cincinnati
The Lyons Corporation
Westerville, OH
Tel: 614.895.1447
Fax: 614.278.3609

Oklahoma
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
E-Mail: info@impinc.com
URL: www.impweb.com

Oregon
ELREPCO - Northwest
Beaverton, OR
Tel: 503.520.1900
Fax: 503.520.1906

Pennsylvania
Eastern Area
Astrorep Mid Atlantic, Inc.
Warminster, PA
Tel: 215.957.9580
Fax: 215.957.9583
URL: www.astrorep.com

Western Area
The Lyons Corporation
Dayton, OH
Tel: 937.278.0714
Fax: 937.278.3609
E-Mail: corporate.office@lyonscorp.com
URL: www.lyonscorp.com

Puerto Rico
Marathon Technical Sales
Mayaguez, PR
Tel: 787.831.4050
Fax: 787.831.4250
URL: www.marathontech.com

Rhode Island
Agile Electronic Sales, LLC.
Nashua, NH 03062
Tel: 603.595.8598
Fax: 603.595.8579
E-Mail: Agile@mediaone.net

South Carolina
BITS, Inc.
Charlotte, NC
Tel: 704.540.8185
Fax: 704.540.8183
URL: www.bits1.com

Tennessee
Eastern Area
BITS, Inc.
Charlotte, NC
Tel: 704.540.8185
Fax: 704.540.8183
URL: www.bits1.com

Western Area
BITS, Inc.
Huntsville, AL
Tel: 256.534.4020
Fax: 256.534.0410
URL: www.bits1.com

Texas
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
E-Mail: info@impinc.com
URL: www.impweb.com

Vermont
Agile Electronic Sales
Nashua, NH 03062
Tel: 603.595.8598
Fax: 603.595.8579
E-Mail: Agile@mediaone.net

Virginia
Astrorep Mid Atlantic, Inc.
Pasadena, MD
Tel: 410.255.8470
Fax: 410.439.0339
URL: www.astrorep.com

Washington
ELREPCO - Northwest
Bellevue, WA
Tel: 425.467.6448
Fax: 425.467.6453

Washington D.C.
Astrorep Mid Atlantic, Inc.
Warminster, PA
Tel: 215.957.9580
Fax: 215.957.9583
URL: www.astrorep.com

Wisconsin
Eastern Area
Horizon Technical Sales, Inc.
Hartford, WI
Tel: 262.670.6776
Cell: 262.853.8050
Fax: 262.670.6778
E-Mail: gedwards@horizontechsales.com
URL: www.horizontechsales.com

Western Area
IMP, Inc.
San Jose, CA
Tel: 408.434.1467
Fax: 408.434.0335
Email: info@impinc.com
URL: www.impweb.com

Wyoming
NELCO Two Company
Boise, ID
Tel: 208.343.9171
Fax: 208.343.9170
Products are distributed in the U.S. by Jaco Electronics, Inc.

Jaco Corporate Headquarters
145 Oser Avenue
Hauppauge, NY 11788
Tel: 516.273.5500
TOLL FREE: 800.989.JACO
E-mail: info@jacoelectronics.com
Internet: www.jacoelectronics.com

Eastern Region
NY, N. NJ, MA, CT, VT,
ME, Canada, S. NJ, DE, NC, SC,
TN, MS, AL, GA, KY, FL

Jaco Electronics, Inc.
Eastern Region
145 Oser Avenue
Hauppauge, NY 11788
Tel: 631.273.5500
Fax: 631.273-5799
E-Mail: info@jacoelectronics.com

MidAtlantic Region
PA, MD, WV, VA, DE

Jaco Electronics, Inc.
Rivers Center
10260 Old Columbia Road
Columbia, MD 21046
Tel: 800.394.5226
Fax: 410.995.6620
E-Mail: jacomd@mindspring.com

Southwest Region
S. CA, NV, AZ

Jaco Electronics, Inc.
Southwest Region
2282 Townsgate Road
Westlake, CA 91361
Tel: 805.495.9998
Fax: 805.494.3864
E-Mail: jacowest@earthlink.net

Northwest Region
N. CA, MT, WY, CO, WA, OR,
ID, UT

Jaco Electronics, Inc.
4010 Moorpark Ave, Ste. 201
San Jose, CA 95117
Tel: 408.261.6700
Fax: 408.261.6717
E-Mail: jacosj@pacbell.net

Jaco Electronics, Inc.
4900 SW Griffith Dr, Ste. 250
Beaverton, OR 97005
Tel: 503.626.1439
Fax: 503.626.0979
E-Mail: info@jacopacificnw.com

Central Region
TX, OK, KS, LA, AR, W. MO,
NE, MN, ND, SD, IA, WI, IL, IN,
MI, E. MO

Jaco Electronics, Inc.
1209 N. Glenville Drive
Richardson, TX 75081
Tel: 972.234.5565
Fax: 972.238.7068
E-Mail: jacotx@flash.net

Jaco Electronics, Inc.
2120-A Braker Lane
Austin, TX 78758
Tel: 512.835.0220
Fax: 512.339.9252
E-Mail: jacoaus@mindspring.com

Jaco Electronics, Inc.
2030 Algonquin Rd
Suite 406
Schaumburg, IL 60173
Tel: 847.303.0700
Fax: 847.303.9573
E-Mail: sheerhold@jacoelectronics.com

Jaco Electronics, Inc.
2401 Pilot Knob Road, Suite 120
Mendota Heights, MN 55120
Tel: 800.844.5226
Fax: 651.452.7464
E-Mail: jacomn@usinternet.com

Jaco Electronics, Inc.
2030 Algonquin Rd
Suite 406
Schaumburg, IL 60173
Tel: 847.303.0700
Fax: 847.303.9573
E-Mail: sheerhold@jacoelectronics.com

Jaco Electronics, Inc.
2401 Pilot Knob Road, Suite 120
Mendota Heights, MN 55120
Tel: 800.844.5226
Fax: 651.452.7464
E-Mail: jacomn@usinternet.com

© 2000 IMP, Inc.
IMP International Sales Locations

IMP, Inc.
Corporate Headquarters
2830 North First Street
San Jose, CA 95134
Main: 408.432.9100
Sales: 408.434.1277
Fax: 408.434.1215
E-mail: info@impinc.com

Internet: www.impweb.com

Australia
Arrow Electronics Australia Pty Ltd.
9 Bastow Place
Mulgrave VIC 3170
Australia
Tel: 61.3.9574.9300
Fax: 61.3.9561.2148
E-Mail: simpson@arwnet.com.au
URL: www.arrow.com.au

Belgium
Tekelec Airtronic B.V.
Prins Boudevijnlaan
B2550 Koninck
Belgium
Tel: 03.450.7800
Fax: 03.450.7809
E-Mail: info@ddelectronics.de
URL: http://www.tekelec.nl

China
Wuhan P&S Electronics Co. Ltd.
15 Shuo Dao Quan Road
Wuhan, Hubei 430079
P.R.C.
Tel: 86.27.87493500
Fax: 86.27.87493506
URL: www.p8s.com

France
A2M
5 Rue Carle Vernet
92315 Sevres Cedex
France
Tel: 33.1.46.23.79.00
Fax: 33.1.46.23.79.23
E-Mail: jmpeyresblanques2m@tekelec.fr
URL: www.tekelec.fr

Germany
Azzurri Technology GmbH
(formerly Tekelec Airtronic GmbH)
Karzinierstrasse 9
D-80337 Munich, Germany
Tel: +49.89.5164.503
Fax: +49.89.5164.305
E-Mail: sales@de.azzurri.com
URL: http://www.azzurri.com

Hong Kong
EIL Company Limited
Unit A, 9/F, V GA Building,
532 Castle Peak Road, Kowloon
Hong Kong
Tel: 852.2741.6811
Fax: 852.2370.9297

Hungary
HT-Electronic KFT
Nepurfo U. 19/F
H-1138 Budapest
Hungary
Tel: 36.1.3395219
Fax: 36.1.3395219
E-Mail: hteurep@elender.hu

India
Teamasia Greaves
Semiconductors Limited
Industrial Development Area
Patancheru 502 319
Medak Dist.
Andhra Pradesh
India
Tel: 91.8455.42032
Fax: 91.8455.42163
E-Mail: team_cv@satyam.net.in

Ireland
Unique-Memec
Block H, Lock Quay,
Clare Street
Limerick
Ireland
Tel: 353.61.316116
Fax: 353.61.316117

Israel
IES Electronics Agencies Ltd.
32 Ben Gurion Street
Ramat-Gan 52573
Israel
Tel: 972.3.7530753
Fax: 972.3.7530754
E-Mail: fred@ies.com
URL: www.ies.com

Italy
Velco Electronic Components s.r.l.
Via Divisione Fogole 9-M
36100 Vicenza Italy
Tel: +39.0444.922922
Fax: +39.0444.922338
E-Mail: info@velco-electronic.com
URL: www.velco-electronic.com

Japan
Teksel Co., Ltd.
Headquarters
TBC, 2-27-10 Higashi,
Shibuya-Ku, Tokyo, 150-0011
Japan
Tel: 81.35.467.9105
Fax: 81.35.467.9346
E-Mail: imp@teksel.co.jp
URL: www.teksel.com

Osaka Branch
Shin Osaka Meikou Building
4-3-12 Miyahara, Yodogawa-Ku,
Osaka-Shi 532-0003
Japan
Tel: 81.66.399.5000
Fax: 81.66.399.0999
URL: www.teksel.co.jp

Nagoya Branch
KS Building
3-18-28 Marunouchi, Naka-Ku,
Nagoya-Shi 460-0002
Japan
Tel: 81.52.971.3611
Fax: 81.52.971.3622
URL: www.teksel.co.jp

Nagano Branch
OAU Building
2-1-22 Tenjin, Ueda-Shi
Nagano 386-0025
Japan
Tel: 81.268.23.7411
Fax: 81.268.23.7412
URL: www.teksel.co.jp

Sequoia Technology Ltd.
(a member of the TEKELEC group)
Tekelec House, Back Lane,
Spencers Wood, Reading,
Berkshire RG7 1PW
United Kingdom
Tel: 44.118.976.9000
Fax: 44.118.976.9020
URL: www.sequoia.co.uk
Kyusyu Branch
Dai-5 Hakata Kaisei Building
1-18-25 Hakata Eki-Higashi,
Hakata-Ku Fukuoka-Shi
Fukuoka 812-0013
Japan
Tel: 81.92.531.7277
Fax: 81.92.531.9960
URL: www.teksel.co.jp

Korea
Acetronix
1st Floor, Ashiville Palace
31-13 Hap-Dong, Sudaimoon-Ku,
Seoul, 120-030
Korea
Tel: 82.2.796.4561
Fax: 82.2.796.4563
E-Mail: ace@ace-tronix.co.kr

AIN Electronics, Inc.
Rm. 203, Blk A, Sin-Sung Officetel
1588-1 Seocho-Dong, Seocho-ku
Seoul 135-120
Korea
Tel: 82.2.581.1741
Fax: 82.2.581.1740
E-Mail: ainelec@thrunet.com

WaveTech Korea, Co., Ltd
6F, DongYoung Bldg, 773-6,
Yoksam-Dong, Kangnam-Gu,
Seoul, 135-080
Korea
Tel: +82.2.545.1231
Fax: +82.2.545.1245
URL: www.wavetech.co.kr

Liechtenstein
Computer Controls AG
Neunbrunnenstr. 55
CH-8050 Zurich
Switzerland
Tel: 41.1.308.66.66
Fax: 41.1.308.66.55

Luxembourg
Tekelec Airtronic B.V.
Prins Boudewijnlaan
B2550 Kontich
Belgium
Tel: 03.450.7800
Fax: 03.450.7809
E-Mail: info@dtelectronics.de
URL: http://www.tekelec.nl

Malaysia
Sabre Technologies Pte. Ltd.
104 Boon Keng Road
#07-07 Kallang Basin
Singapore 339775
South Africa
KH Distributors-South Africa
7965 Capricorn Avenue
P.O. Box 1945
Lenasia 1820
Johannesburg
South Africa
Tel: 27.11.854.5011
Fax: 27.11.852.6513
E-Mail: khd@khdistributors.co.za
URL: http://www.khdistributors.co.za

Spain
Tekelec Española
c/ General Aranañ, 49
28027 Madrid
Spain
Tel: 34.91.371.77.56
Fax: 34.91.320.01.01
E-Mail: components@tekelec.es

Sweden
Martinsson Elektronik AB
Instrumentvägen 16
Box 9060
S-12609 HagerSten
Sweden
Tel: 46.8.744.0300
Fax: 46.8.744.7922
From Oakland International Airport
Go South on 880 and turn right at the Montague Expressway exit, move left out of the car pool lane. Turn left on Zanker Road and then turn right on Daggett Drive.

From San Francisco International Airport
Go South on 101 to the Montague Expressway exit (east). Turn right on Zanker Road and then turn right on Daggett Drive.

From San Jose International Airport
From Terminal Drive go to Airport Blvd. From Airport Blvd., turn onto Airport Pkwy. (Airport Pkwy becomes Brokaw Road after 101). Turn left on North First Street, then turn right on Daggett Drive.

For Additional Directions
408-432-9100
Quality at IMP - Our Policy

Quality Priority
Quality in everything we do is a fundamental IMP commitment. Quality may not be sacrificed for any other priority. Before any action is taken, the effect on quality as seen by employees and by customers must be considered.

Product Quality Conformance
Products and services for our customers will conform to all requirements. Products will meet performance specifications. Services will be complete, meet described requirements, and will be in a format appropriate for the customer’s use. If a specification cannot be met in full, the customer will be advised and a new specification will be negotiated.

Product and Process Quality Improvement
All processes, manufacturing, manufacturing planning, customer service, product design and design of manufacturing processes shall utilize Total Quality Management concepts including Statistical Process Control techniques and designed experiments to ensure continual improvement of products and services.

Employee Responsibility
Each employee is responsible for performing their work correctly and completely. This responsibility for quality performance applies to all design work, development work, manufacturing work and to all supporting work. It applies to all employee levels. It cannot be abandoned or delegated. No one else can take responsibility.

IMP’s Commitment of Support
IMP will provide the tools, the training, and the time necessary for employees to meet their responsibilities.

Employee Participation
IMP encourages all employees to take part in the open discussion, analysis and resolution of problems through participation in quality and productivity teams or through personal suggestions.
Quality at IMP - Our Policy

DET NORSKE VERITAS
QUALITY SYSTEM CERTIFICATE

Certificate No. 99-HOU-AQ-8474

This is to certify that the Quality System of

IMP INC.

at

2830 North First Street, San Jose, CA 95134-2071 USA

Has been found to conform to Quality Standard:

ISO 9001, 1994

This Certificate is valid for the following products/service ranges:

DESIGN AND MANUFACTURE OF ANALOG AND MIXED-SIGNAL INTEGRATED CIRCUITS AND WAFER FABRICATION SERVICES

Place and date:
Houston, Texas; 24 September 1999

This certificate is valid until:
12 August 2002

Initial Certification Date:
08 August 1996

Lack of fulfillment of conditions as set out in the Appendix may render this certificate invalid.

DET NORSKE VERITAS CERTIFICATION, INC., 10540 Park Ten Place, Suite 100, Houston, TX 77094 USA TEL: (281) 721-6600 FAX: (281) 721-6903
IMP offers higher performance, lower-power microprocessor supervisors that are pin compatible with devices from Dallas Semiconductor and Maxim Integrated Products. For the latest information visit www.impweb.com or send specific requests to info@impinc.com.

µP Supervisor Products: Low Power Alternatives to Maxim

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Threshold Voltage (V)</th>
<th>Backup Battery Switch</th>
<th>Watchdog Timer</th>
<th>Power Fail Monitor</th>
<th>Manual Reset</th>
<th>RESET Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP690A</td>
<td>4.65</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>IMP692A</td>
<td>4.40</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>IMP705</td>
<td>4.65</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>IMP706</td>
<td>4.40</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>IMP707</td>
<td>4.65</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>L & H</td>
</tr>
<tr>
<td>IMP708</td>
<td>4.40</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>L & H</td>
</tr>
<tr>
<td>IMP802L</td>
<td>4.65</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>IMP802M</td>
<td>4.40</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>IMP805L</td>
<td>4.65</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP809</td>
<td>2.63 to 4.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>IMP810</td>
<td>2.63 to 4.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP811</td>
<td>2.63 to 4.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td>IMP812</td>
<td>2.63 to 4.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP813L</td>
<td>4.65</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Block Diagrams

IMP690A, IMP692A, IMP802L, IMP802M and IMP805L

IMP705, IMP706 and IMP813L

IMP707 and IMP708
µP Supervisor Products: Low Power Alternatives to Dallas Semiconductor

<table>
<thead>
<tr>
<th>IMP Ordering* Part Number</th>
<th>RESET Voltage (V)</th>
<th>RESET Tolerance (%)</th>
<th>RESET Time (ms)</th>
<th>RESET Polarity</th>
<th>Push-Pull Output Stage</th>
<th>Open Drain Output</th>
<th>8-Pin SO Package</th>
<th>SOT-23 Package</th>
<th>SOT-223 Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP1810R-5/T</td>
<td>4.620</td>
<td>5</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1810R-10/T</td>
<td>4.370</td>
<td>10</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1810R-15/T</td>
<td>4.120</td>
<td>15</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1811R-5/T</td>
<td>4.620</td>
<td>5</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1811R-10/T</td>
<td>4.350</td>
<td>10</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1811R-15/T</td>
<td>4.130</td>
<td>15</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1812R-5/T</td>
<td>4.620</td>
<td>5</td>
<td>150</td>
<td>HIGH</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1812R-10/T</td>
<td>4.350</td>
<td>10</td>
<td>150</td>
<td>HIGH</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1812R-15/T</td>
<td>4.130</td>
<td>15</td>
<td>150</td>
<td>HIGH</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1815R-5/T</td>
<td>3.060</td>
<td>5</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1815R-10/T</td>
<td>2.880</td>
<td>10</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1815R-20/T</td>
<td>2.550</td>
<td>20</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1816R-5/T</td>
<td>3.060</td>
<td>5</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1816R-10/T</td>
<td>2.880</td>
<td>10</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1816R-20/T</td>
<td>2.550</td>
<td>20</td>
<td>150</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1817R-5/T</td>
<td>3.060</td>
<td>5</td>
<td>150</td>
<td>HIGH</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1817R-10/T</td>
<td>2.880</td>
<td>10</td>
<td>150</td>
<td>HIGH</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1817R-20/T</td>
<td>2.550</td>
<td>20</td>
<td>150</td>
<td>HIGH</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1233DZ-5/T</td>
<td>4.625</td>
<td>5</td>
<td>350</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1233DZ-10/T</td>
<td>4.375</td>
<td>10</td>
<td>350</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1233DZ-15/T</td>
<td>4.125</td>
<td>15</td>
<td>350</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1233MS-5/T</td>
<td>4.625</td>
<td>5</td>
<td>350</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1233MS-5/5/T</td>
<td>4.375</td>
<td>10</td>
<td>350</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>IMP1233MS-3/T</td>
<td>2.720</td>
<td>15</td>
<td>350</td>
<td>LOW</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

T indicates Tape and Reel.
USB Power Switches

IMP offers a full complement of Universal Serial Bus (USB) power switches that are higher-performance equivalents to devices from Micrel.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Number of Switches</th>
<th>Open-Load Detection Function</th>
<th>Maximum "ON" Resistance (mΩ)</th>
<th>Enable Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP2505</td>
<td>1</td>
<td>YES</td>
<td>50</td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP2505-1</td>
<td>1</td>
<td>NO</td>
<td>50</td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP2505-2</td>
<td>1</td>
<td>NO</td>
<td>50</td>
<td>LOW</td>
</tr>
<tr>
<td>IMP2505-3</td>
<td>1</td>
<td>YES</td>
<td>50</td>
<td>LOW</td>
</tr>
<tr>
<td>IMP2524-1</td>
<td>4</td>
<td>NO</td>
<td>140</td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP2524-2</td>
<td>4</td>
<td>NO</td>
<td>140</td>
<td>LOW</td>
</tr>
<tr>
<td>IMP2525-1</td>
<td>1</td>
<td>NO</td>
<td>140</td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP2525-2</td>
<td>1</td>
<td>NO</td>
<td>140</td>
<td>LOW</td>
</tr>
<tr>
<td>IMP2525A-1</td>
<td>1</td>
<td>NO</td>
<td>70</td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP2525A-2</td>
<td>1</td>
<td>NO</td>
<td>70</td>
<td>LOW</td>
</tr>
<tr>
<td>IMP2526-1</td>
<td>2</td>
<td>NO</td>
<td>140</td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP2526-2</td>
<td>2</td>
<td>NO</td>
<td>140</td>
<td>LOW</td>
</tr>
<tr>
<td>IMP2527-1</td>
<td>4</td>
<td>NO</td>
<td>300</td>
<td>HIGH</td>
</tr>
<tr>
<td>IMP2527-2</td>
<td>4</td>
<td>NO</td>
<td>300</td>
<td>LOW</td>
</tr>
</tbody>
</table>
Sample Requests and New Product Updates

<table>
<thead>
<tr>
<th>IMP Part</th>
<th>Qty</th>
<th>IMP Part</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP522EMB</td>
<td></td>
<td>IMP528EMA</td>
<td></td>
</tr>
<tr>
<td>IMP525EMA</td>
<td></td>
<td>IMP528ESA</td>
<td></td>
</tr>
<tr>
<td>IMP525ESA</td>
<td></td>
<td>IMP560EMA</td>
<td></td>
</tr>
<tr>
<td>IMP527EMA</td>
<td></td>
<td>IMP560ESA</td>
<td></td>
</tr>
<tr>
<td>IMP527ESA</td>
<td></td>
<td>IMP803LG</td>
<td></td>
</tr>
<tr>
<td>IMP803IMA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fax to

408.434.0335